def create_dcgan_encoder(args, device): net = dcgan.Encoder(args.image_size, args.nc, args.ndf, args.nz, args.n_extra_layers) net.apply(model_helper.weights_init) print(net) optimizer = model_helper.get_optimizer(args, net.parameters()) if torch.cuda.is_available(): net = net.type(torch.cuda.FloatTensor) return net, optimizer
def create_mlp_encoder(args, device): net = mlp.Encoder(args.image_size, args.nc, args.enc_layers, args.nz, activation=nn.LeakyReLU(0.2), use_bn=True, dropout=0) net.apply(model_helper.weights_init) print(net) optimizer = model_helper.get_optimizer(args, net.parameters()) if torch.cuda.is_available(): net = net.type(torch.cuda.FloatTensor) return net, optimizer