def _build_network_lenet(self, x, y, is_training):
        """
            Lenet network construction
            :param x: tensor
                    Raw data
            :param y: tensor
                    Labels given
            :param is_training: boolean
                    Whether it is in the training step.
            :return:
        """
        x_resh = tf.reshape(x, [-1, self._input_width, self._input_height, self._input_channels])
        outfc = []
        for i in range(self._label_nums):  # We train the six labels at the same time
            label_name = "label%d_" % i
            conv1 = conv_layer(x_resh, 5, 1, 32, is_training, name=label_name + "conv1")
            pool1 = avg_pool_layer(conv1, 2, 2, name=label_name + "pool1")

            conv2 = conv_layer(pool1, 5, 1, 64, is_training, name=label_name + "conv2")
            pool2 = avg_pool_layer(conv2, 2, 2, name=label_name + "pool2")

            fc_in = tf.reshape(pool2, [-1, 5 * 5 * 64])
            fc3 = fc_layer(fc_in, 1024, is_training, name=label_name + "fc3", relu_flag=True)
            dropout3 = tf.nn.dropout(fc3, self._keep_prob)

            fc4 = fc_layer(dropout3, self._classes, is_training, name=label_name + "fc4", relu_flag=True)
            outfc.append(fc4)

        out = tf.reshape(tf.concat(outfc, axis=1), [-1, self._label_nums, self._classes])
        loss = weighted_loss(out, y, self._classes, self._loss_array)
        accu, precision, recall, f1 = self._get_network_measure(y, out)

        return loss, out, accu, precision, recall, f1
    def _build_network_alexnet(self, x, y, is_training):
        """
            Alexnet network construction.
                :param x: tensor
                        Raw data
                :param y: tensor
                        Labels given
                :param is_training: boolean
                        Whether it is in the training step.
            :return:
        """
        x_resh = tf.reshape(x, [-1, self._input_width, self._input_height, self._input_channels])
        outfc = []
        for i in range(self._label_nums):  # We train the six labels at the same time
            label_name = "label%d_" % i
            conv1 = conv_layer(x_resh, 11, 1, 64, is_training, name=label_name + "conv1")
            pool1 = avg_pool_layer(conv1, 2, 2, name=label_name + "pool1")
            norm1 = norm_layer(pool1, 4)

            conv2 = conv_layer(norm1, 5, 1, 192, is_training, name=label_name + "conv2", groups=2)
            pool2 = avg_pool_layer(conv2, 2, 2, name=label_name + "pool2")
            norm2 = norm_layer(pool2, 4)

            conv3 = conv_layer(norm2, 3, 1, 384, is_training, name=label_name + "conv3")
            conv4 = conv_layer(conv3, 3, 1, 384, is_training, name=label_name + "conv4")
            conv5 = conv_layer(conv4, 3, 1, 256, is_training, name=label_name + "conv5")
            pool5 = avg_pool_layer(conv5, 2, 2, name=label_name + "pool5")

            fc_in = tf.reshape(pool5, [-1, 3 * 3 * 256])
            fc6 = fc_layer(fc_in, 4096, is_training, name=label_name + "fc6", relu_flag=True)
            dropout6 = tf.nn.dropout(fc6, self._keep_prob)

            fc7 = fc_layer(dropout6, 4096, is_training, name=label_name + "fc7", relu_flag=True)
            dropout7 = tf.nn.dropout(fc7, self._keep_prob)

            fc8 = fc_layer(dropout7, self._classes, is_training, name=label_name + "fc8", relu_flag=True)
            outfc.append(fc8)

        out = tf.reshape(tf.concat(outfc, axis=1), [-1, self._label_nums, self._classes])
        loss = weighted_loss(out, y, self._classes, self._loss_array)
        accu, precision, recall, f1 = self._get_network_measure(y, out)

        return loss, out, accu, precision, recall, f1