Пример #1
0
def perform_inference():
    print('Performing inference')

    FLAGS.resume = True  # Get saved weights, not new ones
    run_dir = get_run_dir(FLAGS.log_dir, FLAGS.model)
    checkpoint_dir = os.path.join(run_dir, 'train')
    fused_graph_file = os.path.join(checkpoint_dir, 'fused_graph.pb')

    eval_data, eval_labels = data.numpy_eval_inputs(True, FLAGS.data_dir,
                                                    FLAGS.batch_size)

    with gfile.FastGFile(fused_graph_file, 'rb') as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())

    with tf.Graph().as_default() as graph:
        assert len(graph.get_operations(
        )) == 0, "Assuming an empty graph here to populate with fused graph"
        tf.import_graph_def(graph_def, name='')

    print('nodes', [n.name for n in graph_def.node])
    XXX = graph.get_tensor_by_name('XXX:0')
    YYY = graph.get_tensor_by_name('YYY:0')

    print("Running model")
    with tf.Session(graph=graph) as sess:
        eval_batch_data = eval_data[0]
        eval_batch_label = eval_labels[0]
        YYY = sess.run(YYY, feed_dict={XXX: eval_batch_data})

    report_accuracy(YYY, eval_batch_label)
Пример #2
0
def save_weights():
    """Saves CIFAR10 weights"""
    FLAGS.resume = True  # Get saved weights, not new ones
    print(FLAGS.save_dir)
    run_dir = get_run_dir(FLAGS.save_dir, FLAGS.model)
    print('run_dir', run_dir)
    checkpoint_dir = os.path.join(run_dir, 'train')

    with tf.Graph().as_default() as g:
        # Get images and labels for CIFAR-10.
        images, labels = data.train_inputs(data_dir=FLAGS.data_dir)
        model = select.by_name(FLAGS.model, FLAGS, training=True)

        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = model.inference(images)
        print('Multiplicative depth', model.mult_depth())

        saver = tf.train.Saver()

        with tf.Session() as sess:
            ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
            if ckpt and ckpt.model_checkpoint_path:
                # Restores from checkpoint
                saver.restore(sess, ckpt.model_checkpoint_path)
                global_step = ckpt.model_checkpoint_path.split('/')[-1].split(
                    '-')[-1]
            else:
                print('### ERROR No checkpoint file found###')
                print('ckpt_dir', checkpoint_dir)
                print('ckpt.model_checkpoint_path', ckpt.model_checkpoint_path)
                print('ckpt', ckpt)
                return

            # Save variables
            for var in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES):
                weight = (sess.run([var]))[0].flatten().tolist()
                filename = model._name_to_filename(var.name)
                dir_name = filename.rsplit('/', 1)[0]
                os.makedirs(dir_name, exist_ok=True)

                print("saving", filename)
                np.savetxt(str(filename), weight)
Пример #3
0
def perform_inference():
    print('Performing inference')

    FLAGS.resume = True  # Get saved weights, not new ones
    run_dir = get_run_dir(FLAGS.save_dir, FLAGS.model, model_number = FLAGS.model_number)
    checkpoint_dir = os.path.join(run_dir, 'train')
    fused_graph_file = os.path.join(checkpoint_dir, 'fused_graph.pb')

    eval_data, eval_labels = data.numpy_eval_inputs(True, FLAGS.data_dir,
                                                    FLAGS.batch_size)

    with gfile.FastGFile(fused_graph_file, 'rb') as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())

    with tf.Graph().as_default() as graph:
        assert len(graph.get_operations(
        )) == 0, "Assuming an empty graph here to populate with fused graph"
        tf.import_graph_def(graph_def, name='')

    print('nodes', [n.name for n in graph_def.node])
    XXX = graph.get_tensor_by_name('XXX:0')
    YYY = graph.get_tensor_by_name('YYY:0')

    print("GETTING CONFIGS")
    print(XXX.name)

    config = server_config_from_flags(FLAGS, XXX.name)

    print("Running model")
    with tf.Session(graph=graph, config=config) as sess:
        start_time = time.time()
        eval_batch_data = eval_data[0]
        eval_batch_label = eval_labels[0]
        YYY = sess.run(YYY, feed_dict={XXX: eval_batch_data})
        elapsed_time = time.time() - start_time 
        print("total time(s)", np.round(elapsed_time, 6))

    report_accuracy(YYY, eval_batch_label)
Пример #4
0
def optimize_model_for_inference():
    """Optimizes CIFAR-10 model for inference"""
    FLAGS.resume = True  # Get saved weights, not new ones
    run_dir = get_run_dir(FLAGS.log_dir, FLAGS.model)
    checkpoint_dir = os.path.join(run_dir, 'train')
    print('run_dir', run_dir)
    print('checkpoint dir', checkpoint_dir)
    ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
    train_graph = os.path.join(checkpoint_dir, 'graph.pbtxt')
    frozen_graph = os.path.join(checkpoint_dir, 'graph_constants.pb')
    fused_graph = os.path.join(checkpoint_dir, 'fused_graph.pb')

    with tf.Session() as sess:
        # TODO this should be a placeholder, right?
        # Build a new inference graph, with variables to be restored from
        # training graph.
        IMAGE_SIZE = 24 if FLAGS.data_aug else 32
        if FLAGS.batch_norm:
            images = tf.constant(1,
                                 dtype=tf.float32,
                                 shape=[1, IMAGE_SIZE, IMAGE_SIZE, 3])
        else:
            images = tf.constant(
                1,
                dtype=tf.float32,
                shape=[FLAGS.batch_size, IMAGE_SIZE, IMAGE_SIZE, 3])

        model = select.by_name(FLAGS.model, FLAGS, training=False)
        # Create dummy input and output nodes
        images = tf.identity(images, 'XXX')
        logits = model.inference(images)
        logits = tf.identity(logits, 'YYY')

        if FLAGS.batch_norm:
            # Restore values from the trained model into corresponding variables in the
            # inference graph.
            ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
            print('ckpt.model_checkpoint_path', ckpt.model_checkpoint_path)
            assert ckpt and ckpt.model_checkpoint_path, "No checkpoint found in {}".format(
                checkpoint_dir)

            saver = tf.train.Saver()
            saver.restore(sess, ckpt.model_checkpoint_path)

            # Write fully-assembled inference graph to a file, so freeze_graph can use it
            tf.io.write_graph(sess.graph,
                              checkpoint_dir,
                              'inference_graph.pbtxt',
                              as_text=True)

            # Freeze graph, converting variables to inline-constants in pb file
            constant_graph = os.path.join(checkpoint_dir, 'graph_constants.pb')
            freeze_graph.freeze_graph(
                input_graph=os.path.join(checkpoint_dir,
                                         'inference_graph.pbtxt'),
                input_saver="",
                input_binary=False,
                input_checkpoint=ckpt.model_checkpoint_path,
                output_node_names='YYY',
                restore_op_name='save/restore_all',
                filename_tensor_name='save/Const:0',
                initializer_nodes=[],
                output_graph=os.path.join(checkpoint_dir,
                                          'graph_constants.pb'),
                clear_devices=True)

            # Load frozen graph into a graph_def for optimize_lib to use
            with gfile.FastGFile(constant_graph, 'rb') as f:
                graph_def = tf.GraphDef()
                graph_def.ParseFromString(f.read())
                sess.graph.as_default()
                tf.import_graph_def(graph_def, name='')

            # Optimize graph for inference, folding Batch Norm ops into conv/MM
            fused_graph_def = optimize_for_inference_lib.optimize_for_inference(
                input_graph_def=graph_def,
                input_node_names=['XXX'],
                output_node_names=['YYY'],
                placeholder_type_enum=dtypes.float32.as_datatype_enum,
                toco_compatible=False)

            print('Optimized for inference.')

            tf.io.write_graph(fused_graph_def,
                              checkpoint_dir,
                              name='fused_graph.pb',
                              as_text=False)
        else:
            tf.io.write_graph(sess.graph,
                              checkpoint_dir,
                              'fused_graph.pb',
                              as_text=False)