def _make_pred_func(self, load):
     from train import ResNetFPNTrackModel
     pred_model = ResNetFPNTrackModel()
     predcfg = PredictConfig(
         model=pred_model,
         session_init=get_model_loader(load),
         input_names=pred_model.get_inference_tensor_names()[0],
         output_names=pred_model.get_inference_tensor_names()[1])
     return OfflinePredictor(predcfg)
 def _init_model(self):
     logger.set_logger_dir("/tmp/test_log/", 'd')
     from dataset import DetectionDataset
     from train import ResNetFPNTrackModel
     # init tensorpack model
     cfg.freeze(False)
     model = ResNetFPNTrackModel()
     DetectionDataset(
     )  # initialize the config with information from our dataset
     finalize_configs(is_training=False)
     return model