Пример #1
0
    def __init__(self, config):
	self.cfg = config
	self.target = []
	self.inp = tf.placeholder(tf.float32, self.cfg.test_param_dims)
	self.initialized = False
	with tf.device('/gpu:0'):
	    with tf.variable_scope("model", reuse=tf.AUTO_REUSE) as scope:
		self.model = cnn_model_struct()
		self.model.build(self.inp, self.cfg.test_param_dims[1:], self.cfg.output_hist_dims[1:], train_mode=False, verbose=False)
	    self.gpuconfig = tf.ConfigProto()
	    self.gpuconfig.gpu_options.allow_growth = True
	    self.gpuconfig.allow_soft_placement = True
	    self.saver = tf.train.Saver()
Пример #2
0
    def __init__(self, config, max_iters=100, tol=1e-7, nsamples=1e5):	

	self.max_iters = max_iters
	self.tol = tol
	self.N = nsamples

	self.cfg = config
	self.target = []

	self.inf_batch_size = 50000

	# placeholder for forward model
	self.forward_model_inpdims = [self.inf_batch_size] + self.cfg.param_dims[1:]
	self.forward_input = tf.placeholder(tf.float32, self.forward_model_inpdims)
	self.forward_initialized = False

	with tf.device('/gpu:0'):
	    with tf.variable_scope("model", reuse=tf.AUTO_REUSE) as scope:
		# build the forward model
		self.forward_model = cnn_model_struct()
		self.forward_model.build(self.forward_input, self.cfg.param_dims[1:], self.cfg.output_hist_dims[1:], train_mode=False, verbose=False)

	    self.gpuconfig = tf.ConfigProto()
	    self.gpuconfig.gpu_options.allow_growth = True
	    self.gpuconfig.allow_soft_placement = True
	    self.saver = tf.train.Saver()
	self.forward_sess = tf.Session(config=self.gpuconfig)
	ckpts = tf.train.latest_checkpoint(self.cfg.model_output)
	self.saver.restore(self.forward_sess, ckpts)

	# placeholder for inverse model
	self.inv_model_inpdims = [1] + self.cfg.output_hist_dims[1:]
	self.inv_input = tf.placeholder(tf.float32, self.inv_model_inpdims)
	
	with tf.device('/gpu:1'):
	    with tf.variable_scope("reversemodel", reuse=tf.AUTO_REUSE) as scope:
		# build the inverse model
		self.inv_model = cnn_reverse_model()
		self.inv_model.build(self.inv_input, self.cfg.output_hist_dims[1:], self.cfg.param_dims[1:], train_mode=False, verbose=False)

	    self.gpuconfig1 = tf.ConfigProto()
	    self.gpuconfig1.gpu_options.allow_growth = True
	    self.gpuconfig1.allow_soft_placement = True
	    self.saver1 = tf.train.Saver(var_list=tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='reversemodel'))

	self.inv_sess = tf.Session(config=self.gpuconfig1)
	ckpts = tf.train.latest_checkpoint(os.path.join(self.cfg.base_dir, 'models', 'rev_'+self.cfg.model_name+'_training_data_binned_{}_nbins_{}_n_{}'.format(int(self.cfg.isBinned),self.cfg.nBins,self.cfg.nDatapoints))
)
	self.saver1.restore(self.inv_sess, ckpts)
Пример #3
0
    def __init__(self,
                 config,
                 max_iters=100,
                 tol=1e-7,
                 nsamples=1e5,
                 tdist=False):

        if tdist:
            self.generateFromProposal = self.generateFromProposalTDist
            self.evalProposalByComponent = self.evalProposalByComponentTDist
        else:
            self.generateFromProposal = self.generateFromProposalNormal
            self.evalProposalByComponent = self.evalProposalByComponentNormal

        self.max_iters = max_iters
        self.tol = tol
        self.N = nsamples

        self.cfg = config
        self.target = []

        self.inf_batch_size = 50000

        # placeholder for forward model
        #self.forward_model_inpdims = [self.inf_batch_size] + self.cfg.param_dims[1:]
        self.forward_model_inpdims = [None] + self.cfg.param_dims[1:]

        self.forward_input = tf.placeholder(tf.float32,
                                            self.forward_model_inpdims)
        self.forward_initialized = False

        with tf.device('/gpu:0'):
            with tf.variable_scope("model", reuse=tf.AUTO_REUSE) as scope:
                # build the forward model
                self.forward_model = cnn_model_struct()
                self.forward_model.build(self.forward_input,
                                         self.cfg.param_dims[1:],
                                         self.cfg.output_hist_dims[1:],
                                         train_mode=False,
                                         verbose=False)

            self.gpuconfig = tf.ConfigProto()
            self.gpuconfig.gpu_options.allow_growth = True
            self.gpuconfig.allow_soft_placement = True
            self.saver = tf.train.Saver()
        self.forward_sess = tf.Session(config=self.gpuconfig)
        ckpts = tf.train.latest_checkpoint(self.cfg.model_output)
        self.saver.restore(self.forward_sess, ckpts)
        '''
Пример #4
0
    def __init__(self,config):
        self.config = config
        self.input = tf.placeholder(tf.float32,
                            [None,config.image_target_size[0],config.image_target_size[1],config.image_target_size[2]], name='ip_placeholder')
        self.initialized = False

        with tf.device('/gpu:0'):
            with tf.variable_scope("model") as scope:
                self.model = cnn_model_struct()
                self.model.build(self.input, config.num_classes, train_mode=False)

            self.gpuconfig = tf.ConfigProto()
            self.gpuconfig.gpu_options.allow_growth = True
            self.gpuconfig.allow_soft_placement = True
            self.saver = tf.train.Saver()