Пример #1
0
def run(dataset,
        model,
        model_ssl,
        runs,
        epochs,
        lr,
        weight_decay,
        early_stopping,
        permute_masks=None,
        logger=None):

    for k in range(runs):
        model.to(device).reset_parameters()
        optimizer = Adam(model.parameters(), lr=lr, weight_decay=weight_decay)

        if torch.cuda.is_available():
            torch.cuda.synchronize()

        data = dataset[0]
        data = data.to(device)
        num_nodes = data.num_nodes
        pivot = int(num_nodes * 0.1)
        cold_mask_node = range(k * pivot, (k + 1) * pivot)
        data.test_mask = cold_mask_node
        train_node = range(num_nodes)
        train_node = [e for e in train_node if e not in cold_mask_node]
        data = test_edges(data, cold_mask_node)
        data.train_mask = random.sample(train_node, 140)
        print("{}-fold Result".format(k))

        # one possibile solution: fix the train_mask_nodes to 140 nodes
        run_(data, dataset, data.total_edge_index, train_node)

        data.masked_nodes = data.train_mask
        train_loader = DataLoader(train_dataset, 140, shuffle=True)

        data = train_edges(data, data.masked_nodes)
        scheduler = StepLR(optimizer, step_size=2000, gamma=0.5)
        for epoch in range(2000):
            with torch.autograd.set_detect_anomaly(True):
                train_loss = train_Z(model, optimizer, data, epoch)
        for epoch in range(5000):
            with torch.autograd.set_detect_anomaly(True):
                train_loss = train(model, optimizer, data, epoch)
                scheduler.step()

        if torch.cuda.is_available():
            torch.cuda.synchronize()
        loss, acc = evaluate(model, data)
        print('Val Loss: {:.4f}, Test Accuracy: {:.3f}'.format(loss, acc))
Пример #2
0
def run(dataset,
        model,
        runs,
        epochs,
        lr,
        weight_decay,
        early_stopping,
        permute_masks=None,
        logger=None):

    batch_size = 30
    test_losses, accs, p0, p1, r0, r1, f0, f1 = [], [], [], [], [], [], [], []

    for k in range(runs):

        model.to(device).reset_parameters()
        optimizer = Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
        best_val_perf = test_perf = 0

        if torch.cuda.is_available():
            torch.cuda.synchronize()

        # t_start = time.perf_counter()

        data = dataset[0]
        data = data.to(device)
        num_nodes = data.num_nodes
        pivot = int(num_nodes * 0.2)
        cold_mask_node = range(k * pivot, (k + 1) * pivot)
        data.test_mask = cold_mask_node
        train_node = range(num_nodes)
        train_node = [e for e in train_node if e not in cold_mask_node]
        data = test_edges(data, cold_mask_node)
        data.train_mask = random.sample(train_node, 140)
        epoch_num = int((num_nodes - pivot) / batch_size)
        print("{}-fold Result".format(k))

        for i in range(5):
            for epoch in range(0, epoch_num):
                data.masked_nodes = train_node[epoch * batch_size:(epoch + 1) *
                                               batch_size]
                data = train_edges(data, data.masked_nodes)
                train_loss = train(model, optimizer, data)
            # log = 'Epoch: {:03d}, Loss: {:.4f}, Test: {:.4f}'
            # print(log.format(epoch, train_loss, test_auc))

        if torch.cuda.is_available():
            torch.cuda.synchronize()
        test_auc, test_recall, test_loss, c_m, edge_index_cs = evaluate(
            model, data)
        test_losses.append(test_loss)
        accs.append(test_auc)
        p0.append(test_recall[0][0])
        p1.append(test_recall[0][1])
        r0.append(test_recall[1][0])
        r1.append(test_recall[1][1])
        f0.append(test_recall[2][0])
        f1.append(test_recall[2][1])

        run_(data, dataset, train_node)
        run_cs(data, dataset, edge_index_cs, train_node)
        # loss, acc = tensor(train_losses), tensor(accs)
        print(c_m)
        print(
            "Train loss: {:.4f},  Test AUC Score: {:.3f},\n precision: {:.4f}, {:.4f},\n recall: {:.4f}, {:.4f},\n fscore: {:.4f}, {:.4f}"
            .format(train_loss, test_auc, test_recall[0][0], test_recall[0][1],
                    test_recall[1][0], test_recall[1][1], test_recall[2][0],
                    test_recall[2][1]))
    acc_, acc, p0, p1, r0, r1, f0, f1 = tensor(test_losses), tensor(
        accs), tensor(p0), tensor(p1), tensor(r0), tensor(r1), tensor(
            f0), tensor(f1)
    print("\n===============\n")
    print("Final Result")
    print(
        'Loss: {:.4f},  Test AUC: {:.3f} ± {:.3f}\n precision: {:.4f}, {:.4f},\n recall: {:.4f}, {:.4f},\n fscore: {:.4f}, {:.4f}'
        .format(acc_.mean().item(),
                acc.mean().item(),
                acc.std().item(), p0.mean(), p1.mean(), r0.mean(), r1.mean(),
                f0.mean(), f1.mean()))
Пример #3
0
def run(dataset,
        model,
        runs,
        epochs,
        lr,
        weight_decay,
        early_stopping,
        permute_masks=None,
        logger=None):

    batch_size = 30
    losses, accs, losses_wo, accs_wo = [], [], [], []

    for k in range(runs):
        model.to(device).reset_parameters()
        optimizer = Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
        best_val_perf = test_perf = 0
        if torch.cuda.is_available():
            torch.cuda.synchronize()

        data = dataset[0]
        # gdc = T.GDC(self_loop_weight=1, normalization_in='sym',
        #             normalization_out='col',
        #             diffusion_kwargs=dict(method='ppr', alpha=0.05),
        #             sparsification_kwargs=dict(method='topk', k=128,
        #                                         dim=0), exact=True)
        # data = gdc(data)
        data = data.to(device)
        num_nodes = data.num_nodes
        pivot = int(num_nodes * 0.1)
        cold_mask_node = range(k * pivot, (k + 1) * pivot)
        data.test_masked_nodes = cold_mask_node
        train_node = range(num_nodes)
        train_node = [e for e in train_node if e not in cold_mask_node]
        data = test_edges(data, cold_mask_node)
        data.train_masked_nodes = random.sample(train_node, 140)
        epoch_num = int((num_nodes - pivot) / batch_size)
        print("{}-fold Result".format(k))

        data = train_edges(data, data.train_masked_nodes)

        loss_wo, acc_wo = run_(data, dataset, data.train_edge_index,
                               train_node)
        losses_wo.append(loss_wo)
        accs_wo.append(acc_wo)
        for epoch in range(1000):
            with torch.autograd.set_detect_anomaly(True):
                train_loss = train(model, optimizer, data, epoch)

        if torch.cuda.is_available():
            torch.cuda.synchronize()
        loss, acc = evaluate(model, data)
        losses.append(loss)
        accs.append(acc)
        print('Val Loss: {:.4f}, Test Accuracy: {:.3f}'.format(loss, acc))
    losses, accs, losses_wo, accs_wo = tensor(losses), tensor(accs), tensor(
        losses_wo), tensor(accs_wo)
    print('w/o Mean Val Loss: {:.4f}, Mean Test Accuracy: {:.3f} ± {:.3f}'.
          format(losses_wo.mean().item(),
                 accs_wo.mean().item(),
                 accs_wo.std().item()))
    print('Mean Val Loss: {:.4f}, Mean Test Accuracy: {:.3f} ± {:.3f}'.format(
        losses.mean().item(),
        accs.mean().item(),
        accs.std().item()))
Пример #4
0
def run(dataset,
        model,
        model_ssl,
        runs,
        epochs,
        lr,
        weight_decay,
        early_stopping,
        permute_masks=None,
        logger=None):

    batch_size = 30
    for k in range(runs):
        district = k
        model.to(device).reset_parameters()
        model_ssl.to(device).reset_parameters()
        optimizer = Adam(model.parameters(), lr=lr, weight_decay=weight_decay)

        if torch.cuda.is_available():
            torch.cuda.synchronize()

        data = dataset[0]
        # gdc = T.GDC(self_loop_weight=1, normalization_in='sym',
        #             normalization_out='col',
        #             diffusion_kwargs=dict(method='ppr', alpha=0.05),
        #             sparsification_kwargs=dict(method='topk', k=128,
        #                                         dim=0), exact=True)
        # data = gdc(data)
        data = data.to(device)
        num_nodes = data.num_nodes
        pivot = int(num_nodes * 0.1)
        cold_mask_node = range(k * pivot, (k + 1) * pivot)
        data.test_mask = cold_mask_node
        train_node = range(num_nodes)
        train_node = [e for e in train_node if e not in cold_mask_node]
        data = test_edges(data, cold_mask_node)
        data.train_mask = random.sample(train_node, 140)
        print("{}-fold Result".format(k))

        # one possibile solution: fix the train_mask_nodes to 140 nodes
        run_(data, dataset, data.total_edge_index, train_node)
        '''
        for i in range(20):
            for epoch in range(0, epoch_num):
                data.masked_nodes = train_node[epoch*batch_size:(epoch+1)*batch_size]
                data = train_edges(data, data.masked_nodes)
                with torch.autograd.set_detect_anomaly(True):
                    train_loss =train(model, optimizer, data)           
            # log = 'Epoch: {:03d}, Loss: {:.4f}, Test: {:.4f}'
            # print(log.format(epoch, train_loss, test_auc))
        '''
        data.masked_nodes = data.train_mask
        data = train_edges(data, data.masked_nodes)
        scheduler = StepLR(optimizer, step_size=2000, gamma=0.5)
        for epoch in range(2000):
            with torch.autograd.set_detect_anomaly(True):
                train_loss = train_Z(model, optimizer, data, epoch)
        for epoch in range(5000):
            with torch.autograd.set_detect_anomaly(True):
                train_loss = train(model, optimizer, data, epoch)
                scheduler.step()

        if torch.cuda.is_available():
            torch.cuda.synchronize()
        loss, acc = evaluate(model, data)
        print('Val Loss: {:.4f}, Test Accuracy: {:.3f}'.format(loss, acc))
Пример #5
0
def run(dataset, model, runs, epochs, lr, weight_decay, early_stopping,
        permute_masks=None, logger=None):
    
    batch_size = 30
    losses, accs , losses_wo, accs_wo= [], [], [], []
    perm = torch.randperm(dataset[0].num_nodes)

    for k in range(runs):
        model.to(device).reset_parameters()
        optimizer = Adam(model.parameters(), lr=lr, weight_decay=weight_decay)
        best_val_perf = test_perf = 0
        if torch.cuda.is_available():
            torch.cuda.synchronize()
        writer = SummaryWriter('runs/{}_{}'.format(k, tt))

        data = dataset[0]
        data = data.to(device)
        num_nodes = data.num_nodes
        

        if os.path.isfile('{}_{}.pkl'.format(str(dataset)[:-2], k)):
            data = pickle.load(open('{}_{}.pkl'.format(str(dataset)[:-2], k), 'rb'))
            
        else:
            pivot= int(num_nodes*0.1)

            cold_mask_node = perm[list(range(k*pivot, (k+1)*pivot))]
            data.test_masked_nodes =cold_mask_node
            train_node = range(num_nodes)
            train_node = [e for e in train_node if e not in cold_mask_node] #or unknown]
            data = test_edges(data, cold_mask_node)
            val_mask_node = random.sample(train_node, int(pivot*0.5))
            data.val_masked_nodes = torch.tensor(val_mask_node)
            data = val_edges(data, val_mask_node)
            train_node = [e for e in train_node if e not in val_mask_node] #or unknown]
            data.train_nodes = train_node
            data.train_masked_nodes = torch.tensor(random.sample(train_node,int(num_nodes*0.1)))
            data = train_edges(data, data.train_masked_nodes)

            with open('{}_{}.pkl'.format(str(dataset)[:-2], k), 'wb') as f:
                pickle.dump(data, f)
        print("{}-fold Result".format(k))
        train_node=data.train_nodes

        loss_wo, acc_wo = run_(data, dataset, data.train_edge_index, train_node,writer)
        losses_wo.append(loss_wo)
        accs_wo.append(acc_wo) 
        scheduler = StepLR(optimizer, step_size=2000, gamma=0.5)
        for epoch in range(2000):
            with torch.autograd.set_detect_anomaly(True):
                train_gan(dataset, data, writer) 



        for epoch in range(5000):
            with torch.autograd.set_detect_anomaly(True):
                train_loss =train(model, optimizer,data,epoch)    
                scheduler.step()
        if torch.cuda.is_available():
            torch.cuda.synchronize()
        loss, acc = evaluate(model, data)
        losses.append(loss)
        accs.append(acc)
        print('Val Loss: {:.4f}, Test Accuracy: {:.3f}'.format(loss,acc))
    losses, accs, losses_wo, accs_wo = tensor(losses), tensor(accs), tensor(losses_wo), tensor(accs_wo)
    print('w/o Mean Val Loss: {:.4f}, Mean Test Accuracy: {:.3f} ± {:.3f}'.
        format(losses_wo.mean().item(),
                accs_wo.mean().item(),
                accs_wo.std().item()
                ))
    print('Mean Val Loss: {:.4f}, Mean Test Accuracy: {:.3f} ± {:.3f}'.
        format(losses.mean().item(),
                accs.mean().item(),
                accs.std().item()
                ))