def main(): args = parser.parse_args() casc_type = os.path.abspath('./data/lbpcascade_frontalface.xml') # casc_type = os.path.abspath('./data/haarcascade_frontalface_default.xml') face_cascade = cv2.CascadeClassifier(casc_type) # Training data # face_recognizer = cv2.face.createLBPHFaceRecognizer() # face_recognizer = cv2.face.LBPHFaceRecognizer_create() # or use EigenFaceRecognizer by replacing above line with # face_recognizer = cv2.face.createEigenFaceRecognizer() # face_recognizer = cv2.face.EigenFaceRecognizer_create() # or use FisherFaceRecognizer by replacing above line with # face_recog = cv2.face.createFisherFaceRecognizer() face_recog = cv2.face.FisherFaceRecognizer_create() folder_path = os.path.abspath('./training_sets') if args.add != 'none': get_photos.main(args.add, args.num) if args.train: print("Preparing data...") faces, labels, names = train_model.prepare_training_data( face_cascade, folder_path) print("Data prepared") # print total faces and labels print("Total faces: ", len(faces)) print("Total labels: ", len(labels)) print(names) face_recog = train_model.recognizer(faces, labels) else: face_recog.read(args.model) names = getNamesMap(folder_path) vid = cv2.VideoCapture(0) in_row_count = 0 while True: ret, frame = vid.read() image, conf, name = train_model.predict(face_cascade, frame, face_recog, names) if image is not None: cv2.imshow("Faces found", image) if conf < 350: in_row_count += 1 else: in_row_count = 0 if in_row_count > 10: print("Unlocked user %s!" % name) in_row_count = 0 if cv2.waitKey(1) & 0xFF == ord('q'): break vid.release() cv2.destroyAllWindows()
def main(): detector = dlib.get_frontal_face_detector() cam = cv2.VideoCapture(0) success, frame = cam.read() while success and cv2.waitKey(1) == -1: success, frame = cam.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = detector(gray, 1) for i, d in enumerate(faces): x = d.top() if d.top() > 0 else 0 w = d.bottom() if d.bottom() > 0 else 0 y = d.left() if d.left() > 0 else 0 h = d.right() if d.right() > 0 else 0 det = frame[x:x + w, y:y + h] det = cv2.resize(det, (img_size, img_size), interpolation=cv2.INTER_LINEAR) label, prob = predict(model, det) if prob > 0.9: show_name = name_list[label] else: show_name = 'Unknown' cv2.putText(frame, show_name, (y, w - 20), cv2.FONT_HERSHEY_SIMPLEX, 1, 255, 2) frame = cv2.rectangle(frame, (y, x), (h, w), (255, 0, 0), 2) cv2.imshow("Camera", frame) cam.release() cv2.destroyAllWindows()
def main(): cam = cv2.VideoCapture(0) success, frame = cam.read() while success and cv2.waitKey(1) == -1: success, frame = cam.read() det = cv2.resize(frame, (img_size, img_size), interpolation=cv2.INTER_LINEAR) # det = image.array_to_img(det) label, prob = predict(model, det) if prob > 0.9: show_name = name_list[label] else: show_name = 'Unknown' cv2.putText(frame, show_name, (20, img_size - 20), cv2.FONT_HERSHEY_SIMPLEX, 1, 255, 2) # frame = cv2.rectangle(frame, (y, x), (h, w), (255, 0, 0), 2) cv2.imshow("Camera", frame) cam.release() cv2.destroyAllWindows()
import train_model import DataPreprocessing hidden_layer_dims = [7, 8] layer_types = ['relu', 'relu', 'sigmoid'] learning_rate = 0.001 num_iterations = 1000 # num_batches = 6 lambd = 0 prob = 1 threshold = 0.5 X_train_scaled, X_test_scaled, Y_train, Y_test = DataPreprocessing.opendata( "wine.csv", "DNN") X_train_tr = X_train_scaled.T Y_train_tr = Y_train.T Y_test = Y_test.T X_test_scaled = X_test_scaled.T params = train_model.model(X_train_tr, Y_train_tr, hidden_layer_dims, layer_types, learning_rate, num_iterations, prob) yptest, accuracytest = train_model.predict(X_test_scaled, Y_test, params, hidden_layer_dims, layer_types, 0.5) print('The accuracy of training set is: %d' % accuracytest) yptrain, accuracytrain = train_model.predict(X_train_tr, Y_train_tr, params, hidden_layer_dims, layer_types, 0.5) print('The accuracy of testing set is: %d' % accuracytrain)
st.warning( "Tell us which nootropics you have tried. For each substance, please rate your subjective experience on a scale of 0 to 10. 0 means a substance was totally useless, or had so many side effects you couldn't continue taking it. 1 - 4 means for subtle effects, maybe placebo but still useful. 5 - 9 means strong effects, definitely not placebo. 10 means life-changing." ) slider_dic = {} checkbox_dic = {} for nootropic in nootropics_list: checkbox_dic[nootropic] = st.checkbox("I've tried {}".format(nootropic)) if checkbox_dic[nootropic]: slider_dic[nootropic] = st.slider("{} rating".format(nootropic), min_value=0, max_value=10) # form = st.form(key=nootropic) # form.text_input(label="{} rating".format(nootropic)) # form_dic[nootropic] = form # submit_button = st.form_submit_button(label='Submit') if st.button("I'm done rating and would like to see predictions"): new_result_df = predict(slider_dic) st.write("Our model predicted this ratings for you:") st.write(new_result_df) if st.button("How accurate is your model ?"): if len(slider_dic) < 2: st.error("Please rate at least two nootropics") else: accuracy_df = evaluate(slider_dic) st.write( "For each nootropic, we hid your rating to our model, and had the model try to guess it." ) st.write(accuracy_df)
import insta_api import train_model # Train the RF classifier print() print("Training results: ") train_model.train() print() # Driver while (True): username = input( "Enter username of user you want to verify whether they are a bot or not: " ) if (username): features = insta_api.features(username) if features: print(train_model.predict(features))