def TrainImages(): # Extract embedding extract_embeddings.run() # Train model train_model.run() mainMenu()
def onTrainModel(self): # Extract embedding extract_embeddings.run() # Train model train_model.run() mb.showinfo("Train model", "Model trained successful")
def run_train_model() -> dict: import train_model try: args = flask.request.get_json() or {} params = { "project": args.get("project", PROJECT), "region": args.get("region", REGION), "container_image": args.get("container_image", CONTAINER_IMAGE), "train_data_dir": args.get("train_data_dir", TRAIN_DATA_DIR), "eval_data_dir": args.get("eval_data_dir", EVAL_DATA_DIR), "training_dir": args.get("training_dir", TRAINING_DIR), "train_epochs": args.get("train_epochs", DEFAULT_TRAIN_EPOCHS), "batch_size": args.get("batch_size", DEFAULT_BATCH_SIZE), "machine_type": args.get("machine_type", DEFAULT_MACHINE_TYPE), "gpu_type": args.get("gpu_type", DEFAULT_GPU_TYPE), "gpu_count": args.get("gpu_count", DEFAULT_GPU_COUNT), } job_id = train_model.run(**params) return { "method": "train-model", "job_id": job_id, "job_url": f"https://console.cloud.google.com/vertex-ai/locations/{REGION}/training/{job_id}/cpu?project={PROJECT}", "params": params, } except Exception as e: return {"error": f"{type(e).__name__}: {e}"}
def main(): global NAME, SIZE, EPOCHS, BATCH_SIZE, data_path save_name = input("Please Enter a Save name: \n") model = read_config(save_name) if not model: name = save_name data_path = pathlib.Path(input("Enter the path of the dataset:\n")) size = get_meta.get_img_meta(data_path) epochs = input("Enter amount of EPOCHS:\n") batch_size = input("Enter the BATCH SIZE:\n") model = Model(name, size, epochs, batch_size, data_path) train_model.run(model.NAME, model.SIZE, model.EPOCHS, model.BATCH_SIZE, model.data_path) save_config(save_name, model)
"""Driver code for language detection model.""" import train_model import argparse import sys def parse_user_options(args): parser = argparse.ArgumentParser(description="Parses command.") parser.add_argument("-t", "--train", help="Path of training file if you want to train from scratch", required=False) parser.add_argument("-d", "--val", help="Path of validation file if you want to do early stopping", required=False) parser.add_argument("-v", "--test", help="Path of test file if you want to test", required=False) parser.add_argument("-p", "--predict", help="Path of a file where each line is a document to classify", required=False) parser.add_argument("-m", "--sample", help="A single sentence to classify", required=False) parser.add_argument("-w", "--topwords", help="Number of words in vocab.", type=int, default=200000) parser.add_argument("-l", "--maxlen", help="Max len of input sequence in words.", type=int, default=20) parser.add_argument("-e", "--embedding", help="Embedding dimesion.", type=int, default=8) parser.add_argument("-s", "--size", help="Model Dimension.", type=int, default=100) parser.add_argument("-o", "--epochs", help="Number of epochs.", type=int, default=30) parser.add_argument("-b", "--batch", help="Mini-batch size.", type=int, default=32) parser.add_argument("-r", "--randomseed", help="Random seed to reproduce numbers.", type=int, default=7) parser.add_argument("-c", "--cached", help="Use cached models for train, test.", action="store_true") parser.add_argument("-u", "--vocab", help="Repopulate vocab.", action="store_true") parser.add_argument("-a", "--early", help="Use early stopping for model training.", action="store_true") options = parser.parse_args(args) return options if __name__=='__main__': options = parse_user_options(sys.argv[1:]) train_model.run(options)
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #GNU General Public License for more details. #You should have received a copy of the GNU General Public License #along with this program. If not, see <http://www.gnu.org/licenses/>. __author__ = "Miquel Ferrarons, David Vazquez" __copyright__ = "Copyright 2015, CVC-UAB" __credits__ = ["Miquel Ferrarons", "David Vazquez"] __license__ = "GPL" __version__ = "1.0" __maintainer__ = "Miquel Ferrarons" import extract_features import train_model import test_image import test_folder import show_results import evaluate_results extract_features.run() #Extracts the features for all the images train_model.run() #Train the classifier #Tests a single image and shows the results #test_image.run() #Test a whole folder test_folder.run() show_results.run() #Saves the resulting images evaluate_results.run()# Runs the evaluation
# local dependencies import train_model print("-->>> Start training a neural net") train_model.run()
# external dependencies import tensorflow_io.kafka as kafka_io # local dependencies import train_model # config values from config import EVENT_STREAMS_API_KEY, CERT from config import KAFKA_BOOTSTRAP, TEST_STREAM_TOPIC_NAME print("-->>> Train a machine learning model using training data from Kafka") model = train_model.run() print("-->>> Prepare a streaming dataset based on a Kafka topic") dataset = kafka_io.KafkaDataset( [TEST_STREAM_TOPIC_NAME + ":0"], servers=KAFKA_BOOTSTRAP, group="dalelane-tensorflow-test", eof=False, config_global=[ "api.version.request=true", "sasl.mechanisms=PLAIN", "security.protocol=sasl_ssl", "sasl.username=token", "sasl.password="******"ssl.ca.location=" + CERT ]) dataset = dataset.map(train_model.deserialize).batch(1) print("-->>> Start classifying events received on the topic %s" % TEST_STREAM_TOPIC_NAME) for image, label in dataset: prediction = model.predict(image) if prediction.argmax() == label[0]: print("---->>>> ✓ Event classified correctly")
log.info("user_recommend insert...") list_recommend = mod.recommendProductsForUsers(30).collect() sql_values = "" rows_num = 0 for i in range(len(list_recommend)): for j in range(len(list_recommend[i][1])): row = list_recommend[i][1][j] sql_values += "(%s,%s,%s)," % (row.user,row.product,row.rating) rows_num += 1 if (i != 0 and i % 100 == 0) or i == len(list_recommend)-1: sql_insert = "insert into user_recommend (uid,pid,rating) values %s" % sql_values.rstrip(',') sql_values = "" cur.execute(sql_insert) conn.commit() log.info("user_recommend(%s users and %s rows) insert complete!" % (len(list_recommend),rows_num)) log.info("user_recommend write redis...") redis_prefix = "rec.user_recommend.uid" for i in range(len(list_recommend)): row = list_recommend[i] json_value = json.dumps(row[1]) pipe.set("%s:%s" % (redis_prefix,row[0]),json_value) pipe.execute() if __name__ == "__main__": import train_model mod = train_model.run() run(mod)
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. __author__ = "Miquel Ferrarons, David Vazquez" __copyright__ = "Copyright 2015, CVC-UAB" __credits__ = ["Miquel Ferrarons", "David Vazquez"] __license__ = "GPL" __version__ = "1.0" __maintainer__ = "Miquel Ferrarons" import extract_features import train_model import test_image import test_folder import show_results import evaluate_results extract_features.run() # Extracts the features for all the images train_model.run() # Train the classifier # Tests a single image and shows the results # test_image.run() # Test a whole folder test_folder.run() show_results.run() # Saves the resulting images evaluate_results.run() # Runs the evaluation