Пример #1
0
def main(dirname, dirname2):
    x_train, y_train, x_val, y_val = load_data(dirname)
    x_test, y_test = load_data_testing(dirname2)
    # print('\nTRAINING DATA X-')
    # print(x_train.shape)
    # print('\nTRAINING DATA Y-')
    # print(y_train.shape)
    # print('\nVALIDATION DATA X-')
    # print(x_val.shape)
    # print('\nVALIDATION DATA Y-')
    # print(y_val.shape)
    # print('\n')
    # print('\TEST DATA X-')
    # print(x_test.shape)
    # print('\nTEST DATA Y-')
    # print(y_test.shape)
    # print('\n')
    model = build_model(y_train.shape[1])
    print('Training stage')
    print('==============')
    model.fit(x_train,
              y_train,
              epochs=200,
              batch_size=16,
              validation_data=(x_val, y_val))
    score, acc = model.evaluate(x_test, y_test, batch_size=16, verbose=0)
    print('Test performance: accuracy={0}, loss={1}'.format(acc, score))
    model.save('model.h5')
    model.summary()
Пример #2
0
def main(dirname):
    x_train, y_train, x_test, y_test = load_data(dirname)
    print(y_train.shape)
    model = build_model(y_train.shape[1])
    print(model.summary())
    print('Training stage')
    print('==============')
    history = model.fit(x_train, y_train, epochs=250, batch_size=16, validation_data=(x_test, y_test))
    score, acc = model.evaluate(x_test, y_test, batch_size=16, verbose=0)
    print('Test performance: accuracy={0}, loss={1}'.format(acc, score))
    model.save('model.h5')
Пример #3
0
def main(dirname):
    x_train, y_train, x_test, y_test = load_data(dirname)
    num_val_samples = (x_train.shape[0]) // 5
    model = build_model(y_train.shape[1])
    print('Training stage')
    print('==============')
    history = model.fit(x_train,
                        y_train,
                        epochs=100,
                        batch_size=32,
                        validation_data=(x_test, y_test))
    score, acc = model.evaluate(x_test, y_test, batch_size=16, verbose=0)
    print('Test performance: accuracy={0}, loss={1}'.format(acc, score))
    model.save('HPRmodelv4.h5')
Пример #4
0
def main():

    # Get Command Line Arguments
    args = ParseCommandLine()
    #Print data directory
    print("Data directory: ", args.data_directory)
    #Print device used
    use_gpu = torch.cuda.is_available() and args.gpu
    if use_gpu:
        print("Training on GPU.")
    else:
        print("Training on CPU.")

    #Print out architecture and hyperparameters
    print("Architecture: {}".format(args.arch))
    print("Learning rate: {}".format(args.learning_rate))
    print("Hidden units: {}".format(args.hidden_units))
    print("Epochs: {}".format(args.epochs))
    #Print our dave_dir option
    if args.save_dir:
        print("Checkpoint save directory: {}".format(args.save_dir))
    #--------------------------------------------------------------------
    # Get data loaders
    train_loader, valid_loader, test_loader, class_to_idx = train_utils.load_data(
        args.data_directory)
    #--------------------------------------------------------------------
    # Build the model
    model = train_utils.build_model(args.arch, args.hidden_units)
    criterion = nn.NLLLoss()
    optimizer = optim.Adam(model.classifier.parameters(),
                           lr=args.learning_rate)
    model.class_to_idx = class_to_idx
    #--------------------------------------------------------------------
    #Train the model
    train_utils.train_model(model, args.epochs, args.learning_rate, use_gpu,
                            criterion, optimizer, train_loader, valid_loader)
    #--------------------------------------------------------------------
    #Validation on the test set
    test_loss, accuracy = train_utils.validate_model(model, criterion,
                                                     test_loader)
    print("Validation on the test set")
    print(f"Test accuracy: {accuracy:.2f}%")

    #--------------------------------------------------------------------
    # Save the checkpoint
    if input_args.save_dir:
        save_checkpoint(args.arch, args.learning_rate, args.hidden_units,
                        args.epochs, model, optimizer, args.save_directory)
Пример #5
0
import argparse
import train_utils

parser = argparse.ArgumentParser(
    description='This script helps in training the model',
)

parser.add_argument('--data_directory', dest='data_directory', action='store', default='./flowers')
parser.add_argument('--model_name', dest='model_name', action='store', default='vgg16')
parser.add_argument('--save_dir', dest='save_dir', action='store', default='checkpoint.pth')
parser.add_argument('--learning_rate', dest='learning_rate', action='store', default=0.001, type=float)
parser.add_argument('--hidden_input', dest='hidden_input',  action='store', default=1024, type=int)
parser.add_argument('--epochs', dest='epochs', action='store', default=5, type=int)
parser.add_argument('--gpu', dest="mode", action="store", default="gpu")

args = parser.parse_args()

# fetch dataloaders
train_data, train_dataloader, test_dataloader, validate_dataloader = train_utils.load_data(args.data_directory)

# setup the classifier, criterion, optimizer model
model, optimizer, criterion = train_utils.create_model(
    args.model_name, args.hidden_input, args.learning_rate, args.mode)

# train model
train_utils.train_model(model, optimizer, criterion, train_dataloader, 
                        validate_dataloader, args.epochs, args.mode)

# save the model as checkpoint
train_utils.save_checkpoint(model, args, optimizer, train_data)
Пример #6
0
def main():

    test_loaders=False

    inputs = argparse.Argumentinputs(description='Train a new network on a data set')

    inputs.add_argument('data_dir', type=str, \
       )
    inputs.add_argument('--save_dir', type=str, \
        help='Directory to save checkpoints')
    inputs.add_argument('--arch', type=str, \
       )
    inputs.add_argument('--learning_rate', type=float, \
        )
    inputs.add_argument('--hidden_units', type=int, \
        )
    inputs.add_argument('--epochs', type=int, \
      )
    inputs.add_argument('--gpu', action='store_true', \
        )
    inputs.add_argument('--save_every', type=int, \
       )
    
    args, _ = inputs.parse_known_args()

    data_dir = args.data_dir

    save_dir = './'
    if args.save_dir:
        save_dir = args.save_dir

    arch = 'densenet121'
    if args.arch:
        arch = args.arch

    learning_rate = 0.01
    if args.learning_rate:
        learning_rate = args.learning_rate

    hidden_units = 200
    if args.hidden_units:
        hidden_units = args.hidden_units

    epochs = 7
    if args.epochs:
        epochs = args.epochs

    save_every = 50
    if args.save_every:
        save_every = args.save_every

    cuda = False
    if args.gpu:
        if torch.cuda.is_available():
            cuda = True
        else:
            print("Warning! GPU flag was set however no GPU is available in \
                the machine")

    trainloader, validloader, testloader = load_data(data_dir)

    # Test loaders
    if test_loaders:
        images, labels = next(iter(trainloader))
        imshow(images[2])
        plt.show()

        images, labels = next(iter(validloader))
        imshow(images[2])
        plt.show()

        images, labels = next(iter(testloader))
        imshow(images[2])
        plt.show()

    train_model(trainloader, validloader, arch=arch, hidden_units=hidden_units,\
     learning_rate=learning_rate, cuda=cuda, epochs=epochs, save_dir=save_dir, \
     save_every=save_every)