from train_utils import save_inout, train_wrap from official.cv.xception.src.Xception import Xception import mindspore.common.dtype as mstype from mindspore import context, Tensor, nn from mindspore.train.serialization import export context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False) n = Xception(num_classes=1000) n.dropout = nn.Dropout(keep_prob=1.0) loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False) optimizer = nn.SGD(n.trainable_params(), learning_rate=0.01, momentum=0.9, dampening=0.0, weight_decay=0.0, nesterov=True, loss_scale=1.0) net = train_wrap(n, loss_fn, optimizer) batch = 2 x = Tensor(np.random.randn(batch, 3, 299, 299), mstype.float32) label = Tensor(np.zeros([batch, 1000]).astype(np.float32)) export(net, x, label, file_name="mindir/xception_train", file_format='MINDIR') if len(sys.argv) > 1: save_inout(sys.argv[1] + "xception", x, label, n, net)
# See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """vgg_train_export.""" import sys import numpy as np from train_utils import save_inout, train_wrap from official.cv.vgg16.src.vgg import vgg16 import mindspore.common.dtype as mstype from mindspore import context, Tensor, nn from mindspore.train.serialization import export context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False) batch = 2 n = vgg16(num_classes=10) loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False) optimizer = nn.Momentum(n.trainable_params(), 0.01, 0.9, use_nesterov=False) net = train_wrap(n, loss_fn, optimizer) x = Tensor(np.random.randn(batch, 3, 224, 224), mstype.float32) label = Tensor(np.zeros([batch, 10]).astype(np.float32)) export(net, x, label, file_name="mindir/vgg_train", file_format='MINDIR') if len(sys.argv) > 1: save_inout(sys.argv[1] + "vgg", x, label, n, net)
# Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """effnet_train_export.""" import sys import numpy as np from train_utils import save_inout, train_wrap from effnet import effnet import mindspore.common.dtype as mstype from mindspore import context, Tensor, nn from mindspore.train.serialization import export context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False) n = effnet(num_classes=10) loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False) optimizer = nn.SGD(n.trainable_params(), learning_rate=0.01, momentum=0.9, dampening=0.0, weight_decay=0.0, nesterov=True, loss_scale=1.0) net = train_wrap(n, loss_fn, optimizer) x = Tensor(np.random.randn(2, 3, 224, 224), mstype.float32) label = Tensor(np.zeros([2, 10]).astype(np.float32)) export(net, x, label, file_name="mindir/effnet_train", file_format='MINDIR') if len(sys.argv) > 1: save_inout(sys.argv[1] + "effnet", x, label, n, net)
import numpy as np from train_utils import save_inout, train_wrap from official.cv.lenet.src.lenet import LeNet5 import mindspore.common.dtype as mstype from mindspore import context, Tensor, nn from mindspore.train.serialization import export context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False) n = LeNet5() loss_fn = nn.MSELoss() optimizer = nn.Adam(n.trainable_params(), learning_rate=1e-2, beta1=0.5, beta2=0.7, eps=1e-2, use_locking=True, use_nesterov=False, weight_decay=0.0, loss_scale=0.3) net = train_wrap(n, loss_fn, optimizer) x = Tensor(np.random.randn(32, 1, 32, 32), mstype.float32) label = Tensor(np.zeros([32, 10]).astype(np.float32)) export(net, x, label, file_name="mindir/lenet_train", file_format='MINDIR') if len(sys.argv) > 1: save_inout(sys.argv[1] + "lenet", x, label, n, net, sparse=False)
device_target="GPU", save_graphs=False) # Mini alexnet is designed for MNIST data batch = 2 number_of_classes = 10 n = AlexNet(phase='test') loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False) optimizer = nn.Adam(n.trainable_params(), learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-8, use_locking=False, use_nesterov=False, weight_decay=0.0, loss_scale=1.0) net = train_wrap(n, loss_fn, optimizer) x = Tensor(np.ones([batch, 1, 32, 32]).astype(np.float32) * 0.01) label = Tensor(np.zeros([batch, number_of_classes]).astype(np.float32)) export(net, x, label, file_name="mindir/mini_alexnet_train", file_format='MINDIR') if len(sys.argv) > 1: save_inout(sys.argv[1] + "mini_alexnet", x, label, n, net, sparse=False)
import sys import numpy as np from train_utils import save_inout, train_wrap from official.cv.googlenet.src.googlenet import GoogleNet import mindspore.common.dtype as mstype from mindspore import context, Tensor, nn from mindspore.train.serialization import export context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False) n = GoogleNet(num_classes=10) loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False) optimizer = nn.SGD(n.trainable_params(), learning_rate=0.01, momentum=0.9, dampening=0.0, weight_decay=5e-4, nesterov=True, loss_scale=0.9) net = train_wrap(n, loss_fn, optimizer) batch = 2 x = Tensor(np.random.randn(batch, 3, 224, 224), mstype.float32) label = Tensor(np.zeros([batch, 10]).astype(np.float32)) export(net, x, label, file_name="mindir/googlenet_train", file_format='MINDIR') if len(sys.argv) > 1: save_inout(sys.argv[1] + "googlenet", x, label, n, net)
import sys import numpy as np from train_utils import save_inout, train_wrap from NetworkInNetwork import NiN import mindspore.common.dtype as mstype from mindspore import context, Tensor, nn from mindspore.train.serialization import export context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False) n = NiN(num_classes=10) loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean") optimizer = nn.SGD(n.trainable_params(), learning_rate=0.01, momentum=0.9, dampening=0.0, weight_decay=5e-4, nesterov=True, loss_scale=0.9) net = train_wrap(n, loss_fn, optimizer) batch = 2 x = Tensor(np.random.randn(batch, 3, 32, 32), mstype.float32) label = Tensor(np.zeros([batch]).astype(np.int32)) export(net, x, label, file_name="mindir/nin_train", file_format='MINDIR') if len(sys.argv) > 1: save_inout(sys.argv[1] + "nin", x, label, n, net)
from train_utils import save_inout, train_wrap import mindspore.common.dtype as mstype from mindspore import context, Tensor, nn from mindspore.train.serialization import export from src.network.densenet import DenseNet121 sys.path.append(os.environ['CLOUD_MODEL_ZOO'] + 'official/cv/densenet121/') #pylint: disable=wrong-import-position context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False) n = DenseNet121(num_classes=10) loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False) optimizer = nn.SGD(n.trainable_params(), learning_rate=0.001, momentum=0.9, dampening=0.0, weight_decay=0.0, nesterov=True, loss_scale=0.9) net = train_wrap(n, loss_fn, optimizer) batch = 2 x = Tensor(np.random.randn(batch, 3, 224, 224), mstype.float32) label = Tensor(np.zeros([batch, 10]).astype(np.float32)) export(net, x, label, file_name="mindir/densenet_train", file_format='MINDIR') if len(sys.argv) > 1: save_inout(sys.argv[1] + "densenet", x, label, n, net)
# distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """shufflenetv2_train_export.""" import sys import numpy as np from train_utils import save_inout, train_wrap from official.cv.shufflenetv2.src.shufflenetv2 import ShuffleNetV2 import mindspore.common.dtype as mstype from mindspore import context, Tensor, nn from mindspore.train.serialization import export context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False) n = ShuffleNetV2(n_class=10) loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False) optimizer = nn.Momentum(n.trainable_params(), 0.01, 0.9, use_nesterov=False) net = train_wrap(n, loss_fn, optimizer) batch = 2 x = Tensor(np.random.randn(batch, 3, 224, 224), mstype.float32) label = Tensor(np.zeros([batch, 10]).astype(np.float32)) export(net, x, label, file_name="mindir/shufflenetv2_train", file_format='MINDIR') if len(sys.argv) > 1: save_inout(sys.argv[1] + "shufflenetv2", x, label, n, net)
from train_utils import save_inout, train_wrap from official.cv.mobilenetv2.src.mobilenetV2 import MobileNetV2Backbone, MobileNetV2Head, mobilenet_v2 import mindspore.common.dtype as mstype from mindspore import context, Tensor, nn from mindspore.train.serialization import export context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False) batch = 16 backbone_net = MobileNetV2Backbone() head_net = MobileNetV2Head(input_channel=backbone_net.out_channels, num_classes=10) n = mobilenet_v2(backbone_net, head_net) loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False) optimizer = nn.Momentum(n.trainable_params(), 0.01, 0.9, use_nesterov=False) net = train_wrap(n, loss_fn, optimizer) x = Tensor(np.random.randn(batch, 3, 224, 224), mstype.float32) label = Tensor(np.zeros([batch, 10]).astype(np.float32)) export(net, x, label, file_name="mindir/mobilenetv2_train", file_format='MINDIR') if len(sys.argv) > 1: save_inout(sys.argv[1] + "mobilenetv2", x, label, n, net, sparse=False)
from mindspore import context, Tensor, nn from mindspore.train.serialization import export context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU", save_graphs=False) n = MobileNetV1(10) loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=False) optimizer = nn.SGD(n.trainable_params(), learning_rate=1e-2, momentum=0.9, dampening=0.1, weight_decay=0.0, nesterov=False, loss_scale=1.0) net = train_wrap(n, loss_fn, optimizer) batch = 2 x = Tensor(np.random.randn(batch, 3, 224, 224), mstype.float32) label = Tensor(np.zeros([batch, 10]).astype(np.float32)) export(net, x, label, file_name="mindir/mobilenetv1_train", file_format='MINDIR') if len(sys.argv) > 1: save_inout(sys.argv[1] + "mobilenetv1", x, label, n, net)