def main(): _mkdir(args.snapshot_directory) _mkdir(args.log_directory) meter_train = Meter() meter_train.load(args.snapshot_directory) #============================================================================== # Workaround to fix OpenMPI bug #============================================================================== multiprocessing.set_start_method("forkserver") p = multiprocessing.Process(target=print, args=("", )) p.start() p.join() #============================================================================== # Selecting the GPU #============================================================================== comm = chainermn.create_communicator() device = comm.intra_rank cuda.get_device(device).use() def _print(*args): if comm.rank == 0: print(*args) _print("Using {} GPUs".format(comm.size)) #============================================================================== # Dataset #============================================================================== dataset_train = Dataset(args.train_dataset_directory) dataset_test = None if args.test_dataset_directory is not None: dataset_test = Dataset(args.test_dataset_directory) #============================================================================== # Hyperparameters #============================================================================== hyperparams = HyperParameters() hyperparams.num_layers = args.generation_steps hyperparams.generator_share_core = args.generator_share_core hyperparams.inference_share_core = args.inference_share_core hyperparams.h_channels = args.h_channels hyperparams.z_channels = args.z_channels hyperparams.u_channels = args.u_channels hyperparams.r_channels = args.r_channels hyperparams.image_size = (args.image_size, args.image_size) hyperparams.representation_architecture = args.representation_architecture hyperparams.pixel_sigma_annealing_steps = args.pixel_sigma_annealing_steps hyperparams.initial_pixel_sigma = args.initial_pixel_sigma hyperparams.final_pixel_sigma = args.final_pixel_sigma _print(hyperparams, "\n") if comm.rank == 0: hyperparams.save(args.snapshot_directory) #============================================================================== # Model #============================================================================== model = Model(hyperparams) model.load(args.snapshot_directory, meter_train.epoch) model.to_gpu() #============================================================================== # Pixel-variance annealing #============================================================================== variance_scheduler = PixelVarianceScheduler( sigma_start=args.initial_pixel_sigma, sigma_end=args.final_pixel_sigma, final_num_updates=args.pixel_sigma_annealing_steps) variance_scheduler.load(args.snapshot_directory) _print(variance_scheduler, "\n") pixel_log_sigma = cp.full( (args.batch_size, 3) + hyperparams.image_size, math.log(variance_scheduler.standard_deviation), dtype="float32") #============================================================================== # Logging #============================================================================== csv = DataFrame() csv.load(args.log_directory) #============================================================================== # Optimizer #============================================================================== optimizer = AdamOptimizer( model.parameters, initial_lr=args.initial_lr, final_lr=args.final_lr, initial_training_step=variance_scheduler.training_step) _print(optimizer, "\n") #============================================================================== # Algorithms #============================================================================== def encode_scene(images, viewpoints): # (batch, views, height, width, channels) -> (batch, views, channels, height, width) images = images.transpose((0, 1, 4, 2, 3)).astype(np.float32) # Sample number of views total_views = images.shape[1] num_views = random.choice(range(1, total_views + 1)) # Sample views observation_view_indices = list(range(total_views)) random.shuffle(observation_view_indices) observation_view_indices = observation_view_indices[:num_views] observation_images = preprocess_images( images[:, observation_view_indices]) observation_query = viewpoints[:, observation_view_indices] representation = model.compute_observation_representation( observation_images, observation_query) # Sample query view query_index = random.choice(range(total_views)) query_images = preprocess_images(images[:, query_index]) query_viewpoints = viewpoints[:, query_index] # Transfer to gpu if necessary query_images = cuda.to_gpu(query_images) query_viewpoints = cuda.to_gpu(query_viewpoints) return representation, query_images, query_viewpoints def estimate_ELBO(query_images, z_t_param_array, pixel_mean, pixel_log_sigma): # KL Diverge, pixel_ln_varnce kl_divergence = 0 for params_t in z_t_param_array: mean_z_q, ln_var_z_q, mean_z_p, ln_var_z_p = params_t normal_q = chainer.distributions.Normal( mean_z_q, log_scale=ln_var_z_q) normal_p = chainer.distributions.Normal( mean_z_p, log_scale=ln_var_z_p) kld_t = chainer.kl_divergence(normal_q, normal_p) kl_divergence += cf.sum(kld_t) kl_divergence = kl_divergence / args.batch_size # Negative log-likelihood of generated image batch_size = query_images.shape[0] num_pixels_per_batch = np.prod(query_images.shape[1:]) normal = chainer.distributions.Normal( query_images, log_scale=pixel_log_sigma) log_px = cf.sum(normal.log_prob(pixel_mean)) / batch_size negative_log_likelihood = -log_px # Empirical ELBO ELBO = log_px - kl_divergence # https://arxiv.org/abs/1604.08772 Section.2 # https://www.reddit.com/r/MachineLearning/comments/56m5o2/discussion_calculation_of_bitsdims/ bits_per_pixel = -(ELBO / num_pixels_per_batch - np.log(256)) / np.log( 2) return ELBO, bits_per_pixel, negative_log_likelihood, kl_divergence #============================================================================== # Training iterations #============================================================================== dataset_size = len(dataset_train) random.seed(0) np.random.seed(0) cp.random.seed(0) for epoch in range(args.epochs): _print("Epoch {}/{}:".format( epoch + 1, args.epochs, )) meter_train.next_epoch() subset_indices = list(range(len(dataset_train.subset_filenames))) subset_size_per_gpu = len(subset_indices) // comm.size if len(subset_indices) % comm.size != 0: subset_size_per_gpu += 1 for subset_loop in range(subset_size_per_gpu): random.shuffle(subset_indices) subset_index = subset_indices[comm.rank] subset = dataset_train.read(subset_index) iterator = gqn.data.Iterator(subset, batch_size=args.batch_size) for batch_index, data_indices in enumerate(iterator): #------------------------------------------------------------------------------ # Scene encoder #------------------------------------------------------------------------------ # images.shape: (batch, views, height, width, channels) images, viewpoints = subset[data_indices] representation, query_images, query_viewpoints = encode_scene( images, viewpoints) #------------------------------------------------------------------------------ # Compute empirical ELBO #------------------------------------------------------------------------------ # Compute distribution parameterws (z_t_param_array, pixel_mean) = model.sample_z_and_x_params_from_posterior( query_images, query_viewpoints, representation) # Compute ELBO (ELBO, bits_per_pixel, negative_log_likelihood, kl_divergence) = estimate_ELBO(query_images, z_t_param_array, pixel_mean, pixel_log_sigma) #------------------------------------------------------------------------------ # Update parameters #------------------------------------------------------------------------------ loss = -ELBO model.cleargrads() loss.backward() optimizer.update(meter_train.num_updates) #------------------------------------------------------------------------------ # Logging #------------------------------------------------------------------------------ with chainer.no_backprop_mode(): mean_squared_error = cf.mean_squared_error( query_images, pixel_mean) meter_train.update( ELBO=float(ELBO.data), bits_per_pixel=float(bits_per_pixel.data), negative_log_likelihood=float( negative_log_likelihood.data), kl_divergence=float(kl_divergence.data), mean_squared_error=float(mean_squared_error.data)) #------------------------------------------------------------------------------ # Annealing #------------------------------------------------------------------------------ variance_scheduler.update(meter_train.num_updates) pixel_log_sigma[...] = math.log( variance_scheduler.standard_deviation) if subset_loop % 100 == 0: _print(" Subset {}/{}:".format( subset_loop + 1, subset_size_per_gpu, dataset_size, )) _print(" {}".format(meter_train)) _print(" lr: {} - sigma: {}".format( optimizer.learning_rate, variance_scheduler.standard_deviation)) #------------------------------------------------------------------------------ # Validation #------------------------------------------------------------------------------ meter_test = None if dataset_test is not None: meter_test = Meter() batch_size_test = args.batch_size * 6 subset_indices_test = list( range(len(dataset_test.subset_filenames))) pixel_log_sigma_test = cp.full( (batch_size_test, 3) + hyperparams.image_size, math.log(variance_scheduler.standard_deviation), dtype="float32") subset_size_per_gpu = len(subset_indices_test) // comm.size with chainer.no_backprop_mode(): for subset_loop in range(subset_size_per_gpu): subset_index = subset_indices_test[subset_loop * comm.size + comm.rank] subset = dataset_train.read(subset_index) iterator = gqn.data.Iterator( subset, batch_size=batch_size_test) for data_indices in iterator: images, viewpoints = subset[data_indices] # Scene encoder representation, query_images, query_viewpoints = encode_scene( images, viewpoints) # Compute empirical ELBO (z_t_param_array, pixel_mean ) = model.sample_z_and_x_params_from_posterior( query_images, query_viewpoints, representation) (ELBO, bits_per_pixel, negative_log_likelihood, kl_divergence) = estimate_ELBO( query_images, z_t_param_array, pixel_mean, pixel_log_sigma_test) mean_squared_error = cf.mean_squared_error( query_images, pixel_mean) # Logging meter_test.update( ELBO=float(ELBO.data), bits_per_pixel=float(bits_per_pixel.data), negative_log_likelihood=float( negative_log_likelihood.data), kl_divergence=float(kl_divergence.data), mean_squared_error=float(mean_squared_error.data)) meter = meter_test.allreduce(comm) _print(" Test:") _print(" {} - done in {:.3f} min".format( meter, meter.elapsed_time, )) model.save(args.snapshot_directory, meter_train.epoch) variance_scheduler.save(args.snapshot_directory) meter_train.save(args.snapshot_directory) csv.save(args.log_directory) _print("Epoch {} done in {:.3f} min".format( epoch + 1, meter_train.epoch_elapsed_time, )) _print(" {}".format(meter_train)) _print(" lr: {} - sigma: {} - training_steps: {}".format( optimizer.learning_rate, variance_scheduler.standard_deviation, meter_train.num_updates, )) _print(" Time elapsed: {:.3f} min".format( meter_train.elapsed_time))
def main(): _mkdir(args.snapshot_directory) _mkdir(args.log_directory) meter_train = Meter() meter_train.load(args.snapshot_directory) #============================================================================== # Selecting the GPU #============================================================================== xp = np gpu_device = args.gpu_device using_gpu = gpu_device >= 0 if using_gpu: cuda.get_device(gpu_device).use() xp = cp #============================================================================== # Dataset #============================================================================== dataset_train = Dataset(args.train_dataset_directory) dataset_test = None if args.test_dataset_directory is not None: dataset_test = Dataset(args.test_dataset_directory) #============================================================================== # Hyperparameters #============================================================================== hyperparams = HyperParameters() hyperparams.num_layers = args.generation_steps hyperparams.generator_share_core = args.generator_share_core hyperparams.inference_share_core = args.inference_share_core hyperparams.h_channels = args.h_channels hyperparams.z_channels = args.z_channels hyperparams.u_channels = args.u_channels hyperparams.r_channels = args.r_channels hyperparams.image_size = (args.image_size, args.image_size) hyperparams.representation_architecture = args.representation_architecture hyperparams.pixel_sigma_annealing_steps = args.pixel_sigma_annealing_steps hyperparams.initial_pixel_sigma = args.initial_pixel_sigma hyperparams.final_pixel_sigma = args.final_pixel_sigma hyperparams.save(args.snapshot_directory) print(hyperparams, "\n") #============================================================================== # Model #============================================================================== model = Model(hyperparams) model.load(args.snapshot_directory, meter_train.epoch) if using_gpu: model.to_gpu() #============================================================================== # Pixel-variance annealing #============================================================================== variance_scheduler = PixelVarianceScheduler( sigma_start=args.initial_pixel_sigma, sigma_end=args.final_pixel_sigma, final_num_updates=args.pixel_sigma_annealing_steps) variance_scheduler.load(args.snapshot_directory) print(variance_scheduler, "\n") pixel_log_sigma = xp.full( (args.batch_size, 3) + hyperparams.image_size, math.log(variance_scheduler.standard_deviation), dtype="float32") #============================================================================== # Logging #============================================================================== csv = DataFrame() csv.load(args.log_directory) #============================================================================== # Optimizer #============================================================================== optimizer = AdamOptimizer( model.parameters, initial_lr=args.initial_lr, final_lr=args.final_lr, initial_training_step=variance_scheduler.training_step) print(optimizer, "\n") #============================================================================== # Visualization #============================================================================== fig = plt.figure(figsize=(9, 6)) axes_train = [ fig.add_subplot(2, 3, 1), fig.add_subplot(2, 3, 2), fig.add_subplot(2, 3, 3), ] axes_train[0].set_title("Training Data") axes_train[0].axis("off") axes_train[1].set_title("Reconstruction") axes_train[1].axis("off") axes_train[2].set_title("Generation") axes_train[2].axis("off") axes_test = [ fig.add_subplot(2, 3, 4), fig.add_subplot(2, 3, 5), fig.add_subplot(2, 3, 6), ] axes_test[0].set_title("Validation Data") axes_test[0].axis("off") axes_test[1].set_title("Reconstruction") axes_test[1].axis("off") axes_test[2].set_title("Generation") axes_test[2].axis("off") #============================================================================== # Algorithms #============================================================================== def encode_scene(images, viewpoints): # (batch, views, height, width, channels) -> (batch, views, channels, height, width) images = images.transpose((0, 1, 4, 2, 3)).astype(np.float32) # Sample number of views total_views = images.shape[1] num_views = random.choice(range(1, total_views + 1)) # Sample views observation_view_indices = list(range(total_views)) random.shuffle(observation_view_indices) observation_view_indices = observation_view_indices[:num_views] observation_images = preprocess_images( images[:, observation_view_indices]) observation_query = viewpoints[:, observation_view_indices] representation = model.compute_observation_representation( observation_images, observation_query) # Sample query view query_index = random.choice(range(total_views)) query_images = preprocess_images(images[:, query_index]) query_viewpoints = viewpoints[:, query_index] # Transfer to gpu if necessary query_images = to_device(query_images, gpu_device) query_viewpoints = to_device(query_viewpoints, gpu_device) return representation, query_images, query_viewpoints def estimate_ELBO(query_images, z_t_param_array, pixel_mean, pixel_log_sigma): # KL Diverge, pixel_ln_varnce kl_divergence = 0 for params_t in z_t_param_array: mean_z_q, ln_var_z_q, mean_z_p, ln_var_z_p = params_t normal_q = chainer.distributions.Normal( mean_z_q, log_scale=ln_var_z_q) normal_p = chainer.distributions.Normal( mean_z_p, log_scale=ln_var_z_p) kld_t = chainer.kl_divergence(normal_q, normal_p) kl_divergence += cf.sum(kld_t) kl_divergence = kl_divergence / args.batch_size # Negative log-likelihood of generated image batch_size = query_images.shape[0] num_pixels_per_batch = np.prod(query_images.shape[1:]) normal = chainer.distributions.Normal( query_images, log_scale=pixel_log_sigma) log_px = cf.sum(normal.log_prob(pixel_mean)) / batch_size negative_log_likelihood = -log_px # Empirical ELBO ELBO = log_px - kl_divergence # https://arxiv.org/abs/1604.08772 Section.2 # https://www.reddit.com/r/MachineLearning/comments/56m5o2/discussion_calculation_of_bitsdims/ bits_per_pixel = -(ELBO / num_pixels_per_batch - np.log(256)) / np.log( 2) return ELBO, bits_per_pixel, negative_log_likelihood, kl_divergence #============================================================================== # Training iterations #============================================================================== dataset_size = len(dataset_train) np.random.seed(0) cp.random.seed(0) start_training = True for epoch in range(meter_train.epoch, args.epochs): print("Epoch {}/{}:".format( epoch + 1, args.epochs, )) meter_train.next_epoch() for subset_index, subset in enumerate(dataset_train): iterator = Iterator(subset, batch_size=args.batch_size) for batch_index, data_indices in enumerate(iterator): #------------------------------------------------------------------------------ # Scene encoder #------------------------------------------------------------------------------ # images.shape: (batch, views, height, width, channels) images, viewpoints = subset[data_indices] representation, query_images, query_viewpoints = encode_scene( images, viewpoints) #------------------------------------------------------------------------------ # Compute empirical ELBO #------------------------------------------------------------------------------ # Compute distribution parameterws (z_t_param_array ) = model.sample_z_and_x_params_from_posterior( query_images, query_viewpoints, representation) # # Compute ELBO # (ELBO, bits_per_pixel, negative_log_likelihood, # kl_divergence) = estimate_ELBO(query_images, z_t_param_array, # pixel_mean, pixel_log_sigma) #------------------------------------------------------------------------------ # Update parameters #------------------------------------------------------------------------------ loss = -ELBO model.cleargrads() loss.backward() # if start_training: # g = chainer.computational_graph.build_computational_graph(pixel_mean) # with open(os.path.join(args.snapshot_directory,'cg.dot'), 'w') as o: # o.write(g.dump()) # start_training = False # exit() optimizer.update(meter_train.num_updates) #------------------------------------------------------------------------------ # Logging #------------------------------------------------------------------------------ with chainer.no_backprop_mode(): mean_squared_error = cf.mean_squared_error( query_images, pixel_mean) meter_train.update( ELBO=float(ELBO.data), bits_per_pixel=float(bits_per_pixel.data), negative_log_likelihood=float( negative_log_likelihood.data), kl_divergence=float(kl_divergence.data), mean_squared_error=float(mean_squared_error.data)) #------------------------------------------------------------------------------ # Annealing #------------------------------------------------------------------------------ variance_scheduler.update(meter_train.num_updates) pixel_log_sigma[...] = math.log( variance_scheduler.standard_deviation) if subset_index % 100 == 0: print(" Subset {}/{}:".format( subset_index + 1, dataset_size, )) print(" {}".format(meter_train)) print(" lr: {} - sigma: {}".format( optimizer.learning_rate, variance_scheduler.standard_deviation)) #------------------------------------------------------------------------------ # Visualization #------------------------------------------------------------------------------ if args.visualize: axes_train[0].imshow( make_uint8(query_images[0]), interpolation="none") axes_train[1].imshow( make_uint8(pixel_mean.data[0]), interpolation="none") with chainer.no_backprop_mode(): generated_x = model.generate_image(query_viewpoints[None, 0], representation[None, 0]) axes_train[2].imshow( make_uint8(generated_x[0]), interpolation="none") #------------------------------------------------------------------------------ # Validation #------------------------------------------------------------------------------ meter_test = None if dataset_test is not None: meter_test = Meter() batch_size_test = args.batch_size * 6 pixel_log_sigma_test = xp.full( (batch_size_test, 3) + hyperparams.image_size, math.log(variance_scheduler.standard_deviation), dtype="float32") with chainer.no_backprop_mode(): for subset in dataset_test: iterator = Iterator(subset, batch_size=batch_size_test) for data_indices in iterator: images, viewpoints = subset[data_indices] # Scene encoder representation, query_images, query_viewpoints = encode_scene( images, viewpoints) # Compute empirical ELBO (z_t_param_array, pixel_mean ) = model.sample_z_and_x_params_from_posterior( query_images, query_viewpoints, representation) (ELBO, bits_per_pixel, negative_log_likelihood, kl_divergence) = estimate_ELBO( query_images, z_t_param_array, pixel_mean, pixel_log_sigma_test) mean_squared_error = cf.mean_squared_error( query_images, pixel_mean) # Logging meter_test.update( ELBO=float(ELBO.data), bits_per_pixel=float(bits_per_pixel.data), negative_log_likelihood=float( negative_log_likelihood.data), kl_divergence=float(kl_divergence.data), mean_squared_error=float(mean_squared_error.data)) print(" Test:") print(" {} - done in {:.3f} min".format( meter_test, meter_test.elapsed_time, )) if args.visualize: axes_test[0].imshow( make_uint8(query_images[0]), interpolation="none") axes_test[1].imshow( make_uint8(pixel_mean.data[0]), interpolation="none") with chainer.no_backprop_mode(): generated_x = model.generate_image( query_viewpoints[None, 0], representation[None, 0]) axes_test[2].imshow( make_uint8(generated_x[0]), interpolation="none") if args.visualize: plt.pause(1e-10) csv.append(epoch, meter_train, meter_test) #------------------------------------------------------------------------------ # Snapshot #------------------------------------------------------------------------------ model.save(args.snapshot_directory, epoch) variance_scheduler.save(args.snapshot_directory) meter_train.save(args.snapshot_directory) csv.save(args.log_directory) print("Epoch {} done in {:.3f} min".format( epoch + 1, meter_train.epoch_elapsed_time, )) print(" {}".format(meter_train)) print(" lr: {} - sigma: {} - training_steps: {}".format( optimizer.learning_rate, variance_scheduler.standard_deviation, meter_train.num_updates, )) print(" Time elapsed: {:.3f} min".format(meter_train.elapsed_time))