Пример #1
0
    x = Dropout(0.15)(x)
    tStream = Model(inputs=sStream.input, outputs=x)

    # Create full 2 stream network
    spatial_average = Lambda(function=lambda x: K.mean(x, axis=1),
                             output_shape=lambda shape:
                             (shape[0], ) + shape[2:])(sStream.outputs[-1])
    spatial_out = Dense(classes, activation='sigmoid')(spatial_average)

    temporal_out = Dense(classes, activation='sigmoid')(tStream.outputs[-1])

    averaged = Average()([spatial_out, temporal_out])

    model = Model(inputs=sStream.input, outputs=averaged)

    model.summary()

    return model


if __name__ == "__main__":

    from training import TrainingSuite

    training_suite = TrainingSuite(BATCH_SIZE, EPOCHS, TRAIN_DIR, TEST_DIR,
                                   FRAME_LENGTH, FRAME_WIDTH, FRAME_NUM,
                                   preprocess_input)
    model = TS_CNN_LSTM(INPUT_SHAPE, KERNEL_SHAPE, POOL_SHAPE, CLASSES)

    training_suite.evaluation(model, WEIGHT_FILE_NAME, gen_logs=False)
Пример #2
0
    model.add(TimeDistributed(Conv2D(filters=64, kernel_size=kernel_shape)))
    model.add(TimeDistributed(Activation("relu")))
    model.add(TimeDistributed(BatchNormalization()))
    model.add(TimeDistributed(MaxPooling2D(pool_size=pool_shape)))

    model.add(TimeDistributed(Conv2D(filters=64, kernel_size=kernel_shape)))
    model.add(TimeDistributed(Activation("relu")))
    model.add(TimeDistributed(BatchNormalization()))
    model.add(TimeDistributed(MaxPooling2D(pool_size=pool_shape)))

    model.add(TimeDistributed(Flatten()))
    model.add(LSTM(512, return_sequences=True))
    # Temporal Mean Pooling
    model.add(
        Lambda(function=lambda x: K.mean(x, axis=1),
               output_shape=lambda shape: (shape[0], ) + shape[2:]))
    model.add(Dense(classes, name='output', activation='sigmoid'))
    model.summary()
    return model


if __name__ == "__main__":

    from training import TrainingSuite

    training_suite = TrainingSuite(BATCH_SIZE, EPOCHS, TRAIN_DIR, TEST_DIR,
                                   FRAME_LENGTH, FRAME_WIDTH, FRAME_NUM)
    model = cnn_lstm(INPUT_SHAPE, KERNEL_SHAPE, POOL_SHAPE, CLASSES)

    training_suite.evaluation(model, WEIGHT_FILE_NAME)