debug_outdir, trainable=True, debugplots_after=1500, record_metrics=True, eweighted=True, ) # this will create issues with the output and is only needed if used in a full dim model. # so it's ok to pop it here for training presel.pop('scatterids') return DictModel(inputs=Inputs, outputs=presel) import training_base_hgcal train = training_base_hgcal.HGCalTraining() if not train.modelSet(): train.setModel(pretrain_model, td = train.train_data.dataclass(), debug_outdir=train.outputDir+'/intplots') train.setCustomOptimizer(tf.keras.optimizers.Adam()) # train.compileModel(learningrate=1e-4) train.keras_model.summary() #start somewhere #from model_tools import apply_weights_from_path
model_outputs = [('pred_beta', pred_beta), ('pred_ccoords',pred_ccoords), ('pred_energy',pred_energy), ('pred_pos',pred_pos), ('pred_time',pred_time), ('pred_id',pred_id), ('pred_dist',pred_dist), ('row_splits',rs)] for i, (x, y) in enumerate(zip(backgatheredids, backgathered_coords)): model_outputs.append(('backgatheredids_'+str(i), x)) model_outputs.append(('backgathered_coords_'+str(i), y)) return RobustModel(model_inputs=Inputs, model_outputs=model_outputs) import training_base_hgcal train = training_base_hgcal.HGCalTraining(testrun=False, resumeSilently=True, renewtokens=False) if not train.modelSet(): train.setModel(gravnet_model) train.setCustomOptimizer(tf.keras.optimizers.Nadam( clipnorm=0.001 )) train.compileModel(learningrate=1e-4, loss=None) verbosity = 2 import os samplepath=train.val_data.getSamplePath(train.val_data.samples[0])