Пример #1
0
def run_perceptron(N, alpha, p_pos):
    model = glm_generative(N=N,
                           alpha=alpha,
                           ensemble_type="gaussian",
                           prior_type="binary",
                           output_type="sgn",
                           prior_p_pos=p_pos)
    scenario = BayesOptimalScenario(model, x_ids=["x"])
    early = EarlyStopping()
    records = scenario.run_all(max_iter=200, callback=early)
    return records
def run_cs(N, alpha, ensemble_type, prior_rho):
    model = glm_generative(
        N=N, alpha=alpha, ensemble_type=ensemble_type, 
        prior_type="gauss_bernoulli", output_type="gaussian",
        prior_rho=prior_rho, output_var=1e-11
    )
    scenario = BayesOptimalScenario(model, x_ids=["x"])
    early = EarlyStopping()
    records = scenario.run_all(
        metrics=["mse"], max_iter=200, callback=early
    )
    return records
Пример #3
0
def run_phase_retrieval(N, alpha, prior_mean):
    model = glm_generative(N=N,
                           alpha=alpha,
                           ensemble_type="complex_gaussian",
                           prior_type="gauss_bernouilli",
                           output_type="modulus",
                           prior_mean=prior_mean,
                           prior_rho=0.5)
    scenario = BayesOptimalScenario(model, x_ids=["x"])
    early = EarlyStopping(wait_increase=10)
    records = scenario.run_all(metrics=["mse", "phase_mse"],
                               max_iter=200,
                               damping=0.3,
                               callback=early)
    return records