Пример #1
0
    def convert_resizebilinear(self, op):
        resize_size_arg = ConverterUtil.get_arg(
            op, MaceKeyword.mace_resize_size_str)
        if resize_size_arg is not None:
            newdim = resize_size_arg.ints
        else:
            height_scale_arg = ConverterUtil.get_arg(
                op, MaceKeyword.mace_height_scale_str)
            width_scale_arg = ConverterUtil.get_arg(
                op, MaceKeyword.mace_width_scale_str)
            mace_check(
                height_scale_arg is not None and width_scale_arg is not None,
                "Wrong ResizeBilinear arguments.")
            if len(op.input) == 2:
                op.input.pop()
            height_scale = height_scale_arg.f
            width_scale = width_scale_arg.f
            producer_op = self._producers[op.input[0]]
            for i in range(len(producer_op.output)):
                if producer_op.output[i] == op.input[0]:
                    input_shape = producer_op.output_shape[i]
                    break
            newdim = [
                int(height_scale * input_shape.dims[1]),
                int(width_scale * input_shape.dims[2])
            ]
        self.add_arg_const_node(op, '/newdim:0', [2], newdim)

        self.add_min_max_const_node(op, op.input[0])

        self.add_resize_args(op)

        op.type = HexagonOp.QuantizedResizeBilinear_8.name
Пример #2
0
    def convert_resizenearestneighbor(self, op):
        height_scale_arg = ConverterUtil.get_arg(
            op, MaceKeyword.mace_height_scale_str)
        width_scale_arg = ConverterUtil.get_arg(
            op, MaceKeyword.mace_width_scale_str)
        if height_scale_arg is not None:
            mace_check(
                width_scale_arg is not None,
                "height scale and width scale should be present at the same time."
            )  # noqa
            if len(op.input) == 2:
                op.input.pop()
            height_scale = height_scale_arg.f
            width_scale = width_scale_arg.f
            producer_op = self._producers[op.input[0]]
            for i in range(len(producer_op.output)):
                if producer_op.output[i] == op.input[0]:
                    input_shape = producer_op.output_shape[i]
                    break
            newdim = [
                int(height_scale * input_shape.dims[1]),
                int(width_scale * input_shape.dims[2])
            ]
            self.add_arg_const_node(op, '/newdim:0', [2], newdim)

        self.add_min_max_const_node(op, op.input[0])

        self.add_resize_args(op)

        op.type = HexagonOp.ResizeNearestNeighbor_8.name
Пример #3
0
    def infer_shape_argmax(self, op):
        input_shape = self._output_shape_cache[op.input[0]]
        output_dim_num = len(input_shape)
        if output_dim_num < 3:
            output_dim_num = 3

        axis_arg = ConverterUtil.get_arg(op, MaceKeyword.mace_axis_str)
        has_axis = (axis_arg is not None)
        axis_value = 0
        if has_axis:
            axis_value = axis_arg.i
            if axis_value < 0:
                axis_value = len(input_shape) + axis_value

        top_k = ConverterUtil.get_arg(op, MaceKeyword.mace_top_k_str).i
        mace_check(top_k >= 1, "Invalid top_k value")
        out_val = ConverterUtil.get_arg(op, MaceKeyword.mace_out_val_str).i

        if has_axis:  # Produces max_ind or max_val per axis
            output_shape = input_shape
            output_shape[axis_value] = top_k
        else:
            output_shape = [1] * output_dim_num
            output_shape[0] = input_shape[0]
            output_shape[2] = top_k
            if out_val:  # Produces max_ind and max_val
                output_shape[1] = 2

        self.add_output_shape(op, [output_shape])
Пример #4
0
    def convert_reduce(self, op):
        self.add_min_max_const_node(op, op.input[0])
        reduce_type_arg = ConverterUtil.get_arg(
            op, MaceKeyword.mace_reduce_type_str)
        mace_check(reduce_type_arg.i == ReduceType.MEAN.value,
                   "Hexagon Reduce only supports Mean now.")
        keep_dims_arg = ConverterUtil.get_arg(op,
                                              MaceKeyword.mace_keepdims_str)
        mace_check(keep_dims_arg.i == 1,
                   "Hexagon Reduce Mean only supports keep dims now.")
        axis_arg = ConverterUtil.get_arg(op, MaceKeyword.mace_axis_str)
        mace_check(1 <= len(axis_arg.ints) <= 2,
                   "Hexagon Reduce Mean only supports spatial now.")
        for i in axis_arg.ints:
            mace_check(1 <= i <= 2,
                       "Hexagon Reduce Mean only supports spatial now")
        producer_op_name, _ = get_op_and_port_from_tensor(op.input[0])
        input_dims = None
        for producer_op in self._model.op:
            if producer_op.name == producer_op_name:
                input_dims = producer_op.output_shape[0].dims
                break
        mace_check(input_dims is not None, "Missing input shape.")
        if len(axis_arg.ints) == 1:
            dim1, dim2 = (input_dims[1], 1) \
                if axis_arg.ints[0] == 1 else (1, input_dims[2])
        else:
            dim1, dim2 = input_dims[1], input_dims[2]
        self.add_arg_const_node(op, '/window:0', [1, dim1, dim2, 1])
        self.add_arg_const_node(op, '/strides:0', [1, dim1, dim2, 1])

        op.type = HexagonOp.QuantizedAvgPool_8.name
Пример #5
0
    def convert_conv2d(self, op):
        if len(op.input) < 3:
            bias = self.add_bias(op)
        else:
            bias = op.input.pop()

        self.add_min_max_const_node(op, op.input[0])
        self.add_min_max_const_node(op, op.input[1])

        strides_arg = ConverterUtil.get_arg(op, 'strides')
        mace_check(strides_arg is not None,
                   "Missing strides of Conv or Depthwise Conv.")
        self.add_arg_const_node(
            op, '/strides:0', [1, strides_arg.ints[0], strides_arg.ints[1], 1])

        op.input.append(bias)
        self.add_min_max_const_node(op, bias)
        self.add_min_max_const_node(op, op.output[0], True, True, False)

        self.add_padding_type_for_conv_pooling(op,
                                               self._consts[op.input[1]].dims,
                                               strides_arg.ints)

        dilations_arg = ConverterUtil.get_arg(op, 'dilations')
        mace_check(
            dilations_arg is None
            or (dilations_arg.ints[0] == 1 and dilations_arg.ints[1] == 1),
            "Hexagon only support dilations[1,1].")

        if op.type == MaceOp.DepthwiseConv2d.name:
            op.type = HexagonOp.DepthwiseSupernode_8x8p32to8.name
        else:
            op.type = HexagonOp.Supernode_8x8p32to8.name
Пример #6
0
    def ensure_binary_input(self):
        for _op in self._model.op:
            if _op.type != MaceOp.Eltwise.name:
                continue
            if len(_op.input) != 1:
                continue
            eltwise_type = ConverterUtil.get_arg(
                _op, MaceKeyword.mace_element_type_str).i
            if eltwise_type != EltwiseType.SUM.value and \
               eltwise_type != EltwiseType.PROD.value:
                continue

            float_value_arg = ConverterUtil.get_arg(
                _op, MaceKeyword.mace_scalar_input_str)
            mace_check(
                float_value_arg.f is not None,
                _op.name + ': ' + MaceKeyword.mace_scalar_input_str +
                ' value float should not be None')
            scalar = float_value_arg.f
            const_tensor = self._model.tensors.add()
            const_tensor.name = _op.name + '/' + \
                MaceKeyword.mace_scalar_input_str + ':0'
            const_tensor.dims.extend([1])
            const_tensor.data_type = _op.output_type[0]
            if _op.output_type[0] == mace_pb2.DT_UINT8 or \
                    _op.output_type[0] == mace_pb2.DT_INT16:
                const_tensor.scale = scalar
                const_tensor.zero_point = 0
                const_tensor.quantized = True
                const_tensor.int32_data.extend([1])
            elif _op.output_type[0] == mace_pb2.DT_FLOAT:
                const_tensor.float_data.extend([scalar])
            _op.input.extend([const_tensor.name])
            ConverterUtil.del_arg(_op, MaceKeyword.mace_scalar_input_str)
            ConverterUtil.del_arg(_op, MaceKeyword.mace_scalar_input_index_str)
Пример #7
0
    def convert_reduce(self, op):
        self.add_min_max_const_node(op, op.input[0])
        reduce_type_arg = ConverterUtil.get_arg(
            op, MaceKeyword.mace_reduce_type_str)
        mace_check(reduce_type_arg.i == ReduceType.MEAN.value,
                   "Hexagon Reduce only supports Mean now.")
        keep_dims_arg = ConverterUtil.get_arg(
            op, MaceKeyword.mace_keepdims_str)
        mace_check(keep_dims_arg.i == 1,
                   "Hexagon Reduce Mean only supports keep dims now.")
        axis_arg = ConverterUtil.get_arg(op, MaceKeyword.mace_axis_str)
        mace_check(1 <= len(axis_arg.ints) <= 2,
                   "Hexagon Reduce Mean only supports spatial now.")
        for i in axis_arg.ints:
            mace_check(1 <= i <= 2,
                       "Hexagon Reduce Mean only supports spatial now")
        input_shape = get_input_shape(op.input[0], self._model)
        if len(axis_arg.ints) == 1:
            dim1, dim2 = (input_shape[1], 1) \
                if axis_arg.ints[0] == 1 else (1, input_shape[2])
        else:
            dim1, dim2 = input_shape[1], input_shape[2]
        self.add_arg_const_node(op, '/window:0', [1, dim1, dim2, 1])
        self.add_arg_const_node(op, '/strides:0', [1, dim1, dim2, 1])

        op.type = HexagonOp.QuantizedAvgPool_8.name
Пример #8
0
    def infer_shape_matmul(self, op):
        lhs_shape = self._output_shape_cache[op.input[0]]
        lhs_rank = len(lhs_shape)
        lhs_rows = lhs_shape[-2]
        lhs_cols = lhs_shape[-1]
        rhs_shape = self._output_shape_cache[op.input[1]]
        rhs_rank = len(rhs_shape)
        rhs_rows = rhs_shape[-2]
        rhs_cols = rhs_shape[-1]
        transpose_a_ = ConverterUtil.get_arg(
            op, MaceKeyword.mace_transpose_a_str).i
        transpose_b_ = ConverterUtil.get_arg(
            op, MaceKeyword.mace_transpose_b_str).i

        rows = lhs_cols if transpose_a_ else lhs_rows
        cols = rhs_rows if transpose_b_ else rhs_cols

        if lhs_rank >= rhs_rank:
            if lhs_rank > rhs_rank:
                mace_check(
                    rhs_rank == 2,
                    'The rhs rank of non-batched MatMul must be 2')  # noqa
            output_shape = lhs_shape.copy()
            output_shape[lhs_rank - 2] = rows
            output_shape[lhs_rank - 1] = cols
        else:
            output_shape = rhs_shape.copy()
            output_shape[rhs_rank - 2] = rows
            output_shape[rhs_rank - 1] = cols
        self.add_output_shape(op, [output_shape])
Пример #9
0
 def add_tensorflow_padding_value(self):
     for op in self._model.op:
         padding_type = ConverterUtil.get_arg(op,
                                              MaceKeyword.mace_padding_str)
         if padding_type is None:
             continue
         padding_arg = op.arg.add()
         padding_arg.name = MaceKeyword.mace_padding_values_str
         if padding_type.i == PaddingMode.VALID.value:
             padding_arg.ints.extend([0, 0, 0, 0])
         elif padding_type.i == PaddingMode.SAME.value:
             stride = ConverterUtil.get_arg(
                 op, MaceKeyword.mace_strides_str).ints
             kernel = []
             dilation = [1, 1]
             if op.type == MaceOp.Conv2D.name or \
                op.type == MaceOp.DepthwiseConv2d.name or \
                op.type == MaceOp.Deconv2D.name:
                 if ConverterUtil.get_arg(
                         op, MaceKeyword.mace_dilations_str) is not None:
                     dilation = ConverterUtil.get_arg(
                         op, MaceKeyword.mace_dilations_str).ints
                 for tensor in self._model.tensors:
                     if tensor.name == op.input[1]:
                         kernel = tensor.dims[1:3]
                         break
             else:
                 kernel = ConverterUtil.get_arg(
                     op, MaceKeyword.mace_kernel_str).ints
             in_size = []
             for input_info in self._model.input_info:
                 if input_info.name == op.input[0]:
                     in_size = input_info.dims[1:3]
                     break
             for _op in self._model.op:
                 for out in _op.output:
                     if out == op.input[0]:
                         in_size = _op.output_shape[0].dims[1:3]
                         break
                 if len(in_size) > 0:
                     break
             out_size = op.output_shape[0].dims[1:3]
             if (op.type == MaceOp.Deconv2D.name):
                 h = (in_size[0] - 1) * stride[0] + kernel[0] - out_size[0]
                 w = (in_size[1] - 1) * stride[1] + kernel[1] - out_size[1]
             else:
                 h = (out_size[0] - 1) * stride[0] \
                     + ((kernel[0] - 1) * dilation[0] + 1) - in_size[0]
                 w = (out_size[1] - 1) * stride[1] \
                     + ((kernel[1] - 1) * dilation[1] + 1) - in_size[1]
             top = int(np.floor(h / 2))
             left = int(np.floor(w / 2))
             bottom = h - top
             right = w - left
             padding_arg.ints.extend([top, right, bottom, left])
Пример #10
0
    def convert_elementwise(self, op):
        element_type = ConverterUtil.get_arg(
            op, MaceKeyword.mace_element_type_str).i

        if element_type == EltwiseType.DIV.value and \
                op.input[0] in self._consts:
            tensor = self._consts[op.input[0]]
            if len(tensor.int32_data) == 1:
                f = tensor.scale * (tensor.int32_data[0] - tensor.zero_point)
                if abs(f - 1) < 1e-6:  # recip
                    op_input = op.input[1]
                    del op.input[:]
                    op.input.append(op_input)
                    self.add_min_max_const_node(op, op.input[0])
                    op.type = HexagonOp.QuantizedRecip_8.name
                    return
        if element_type == EltwiseType.POW.value and \
                ConverterUtil.get_arg(
                    op, MaceKeyword.mace_scalar_input_str).f == 0.5:
            self.add_min_max_const_node(op, op.input[0])
            op.type = HexagonOp.QuantizedSqrt_8.name
            return
        if element_type == EltwiseType.CLIP.value:
            self.add_min_max_const_node(op, op.input[0])
            coeff = ConverterUtil.get_arg(op,
                                          MaceKeyword.mace_coeff_str).floats
            min_value, max_value = coeff[0], coeff[1]
            self.add_arg_const_node(op,
                                    "/min:0", [1], [min_value],
                                    data_type=mace_pb2.DT_FLOAT)
            self.add_arg_const_node(op,
                                    "/max:0", [1], [max_value],
                                    data_type=mace_pb2.DT_FLOAT)
            op.type = HexagonOp.QuantizedClamp_8.name
            return
        if len(op.input) == 1:
            scalar_input = ConverterUtil.get_arg(
                op, MaceKeyword.mace_scalar_input_str).f
            self.add_quantized_scalar_const_node("/b:0", scalar_input, op)
        self.add_min_max_const_node(op, op.input[0])
        self.add_min_max_const_node(op, op.input[1])

        if element_type in [
                EltwiseType.SUM.value, EltwiseType.SUB.value,
                EltwiseType.MIN.value, EltwiseType.MAX.value,
                EltwiseType.DIV.value
        ]:
            self.add_min_max_const_node(op, op.output[0], True, True, False)
        try:
            op.type = self.eltwise_type[element_type]
        except KeyError:
            mace_check(
                False, "Hexagon does not support elementwise %s" %
                EltwiseType(element_type).name)
Пример #11
0
    def convert_stridedslice(self, op):
        begin_mask = ConverterUtil.get_arg(op,
                                           MaceKeyword.mace_begin_mask_str).i
        end_mask = ConverterUtil.get_arg(op, MaceKeyword.mace_end_mask_str).i
        shrink_mask = ConverterUtil.get_arg(
            op, MaceKeyword.mace_shrink_axis_mask_str).i
        self.add_arg_const_node(op, "/begin_mask:0", [1], [begin_mask])
        self.add_arg_const_node(op, "/end_mask:0", [1], [end_mask])
        self.add_arg_const_node(op, "/shrink_mask:0", [1], [shrink_mask])
        self.add_min_max_const_node(op, op.input[0])

        op.type = HexagonOp.QuantizedStridedSlice_8.name
Пример #12
0
    def add_deconv_pad_node(self, op):
        padding_type_arg = \
            ConverterUtil.get_arg(op, MaceKeyword.mace_padding_type_str)
        padding_values_arg = \
            ConverterUtil.get_arg(op, MaceKeyword.mace_padding_values_str)
        mace_check(
            padding_type_arg is not None or padding_values_arg is not None,
            "Missing padding of Deconv.")
        if padding_type_arg is not None:
            padding_type = PaddingMode(padding_type_arg.i)
            strides_arg = ConverterUtil.get_arg(op,
                                                MaceKeyword.mace_strides_str)
            mace_check(strides_arg is not None, "Missing strides of Deconv.")
            stride_h = strides_arg.ints[0]
            stride_w = strides_arg.ints[1]

            input_shape = self.get_input_shape(op.input[0])
            input_h = input_shape[1]
            input_w = input_shape[2]
            filter_tensor = self._consts[op.input[1]]
            filter_h = filter_tensor.dims[1]
            filter_w = filter_tensor.dims[2]
            output_h = op.output_shape[0].dims[1]
            output_w = op.output_shape[0].dims[2]

            if padding_type == PaddingMode.VALID:
                expected_input_h = (output_h - filter_h + stride_h) // stride_h
                expected_input_w = (output_w - filter_w + stride_w) // stride_w
            elif padding_type == PaddingMode.SAME:
                expected_input_h = (output_h + stride_h - 1) // stride_h
                expected_input_w = (output_w + stride_w - 1) // stride_w
            else:
                raise Exception(
                    'Hexagon deconv does not support padding type: ',
                    padding_type)
            mace_check(expected_input_h == input_h,
                       "Wrong input/output height")
            mace_check(expected_input_w == input_w, "Wrong input/output width")

            pad_h = (input_h - 1) * stride_h + filter_h - output_h
            pad_w = (input_w - 1) * stride_w + filter_w - output_w
        else:
            pad_h = padding_values_arg.ints[0]
            pad_w = padding_values_arg.ints[1]

        pad_h, pad_w = max(pad_h, 0), max(pad_w, 0)
        pad_top = pad_h // 2
        pad_bottom = pad_h - pad_top
        pad_left = pad_w // 2
        pad_right = pad_w - pad_left
        paddings = [pad_top, pad_bottom, pad_left, pad_right]
        self.add_arg_const_node(op, "/paddings:0", [1, 1, 2, 2], paddings)
Пример #13
0
    def convert_resizebilinear(self, op):
        newdim_arg = ConverterUtil.get_arg(op,
                                           MaceKeyword.mace_resize_size_str)
        self.add_arg_const_node(op, '/newdim:0', [len(newdim_arg.ints)],
                                newdim_arg.ints)

        self.add_min_max_const_node(op, op.input[0])

        align_corners_arg = ConverterUtil.get_arg(
            op, MaceKeyword.mace_align_corners_str)
        self.add_arg_const_node(op, '/align_corners:0', [1],
                                [align_corners_arg.i])

        op.type = HexagonOp.QuantizedResizeBilinear_8.name
Пример #14
0
    def convert_activation(self, op):
        self.add_min_max_const_node(op, op.input[0])

        act_type = ConverterUtil.get_arg(
            op, MaceKeyword.mace_activation_type_str).s.decode()
        if act_type == ActivationType.RELUX.name:
            x = ConverterUtil.get_arg(
                op, MaceKeyword.mace_activation_max_limit_str).f
            self.add_scalar_const_node("/x:0", x, op)
        try:
            op.type = self.activation_type[act_type]
        except KeyError:
            mace_check(False,
                       "Hexagon does not support activation %s" % act_type)
Пример #15
0
    def add_resize_args(self, op):
        align_corners_arg = ConverterUtil.get_arg(
            op, MaceKeyword.mace_align_corners_str)
        self.add_arg_const_node(op, '/align_corners:0', [1],
                                [align_corners_arg.i])

        coordinate_transformation_mode_arg = ConverterUtil.get_arg(
            op, MaceKeyword.mace_coordinate_transformation_mode_str)
        if coordinate_transformation_mode_arg is not None:
            name = CoordinateTransformationMode(
                coordinate_transformation_mode_arg.i)
            value = coordinate_transformation_mode_arg.i
            mace_check(value == CoordinateTransformationMode.HALF_PIXEL.value,
                       "Hexagon does not support resize %s" % name)
            self.add_arg_const_node(op, '/half_pixel_centers:0', [1], [1])
Пример #16
0
    def infer_shape_prior_box(self, op):
        output_shape = [1, 2, 1]
        input_shape = list(self._output_shape_cache[op.input[0]])
        input_w = input_shape[3]
        input_h = input_shape[2]
        min_size = ConverterUtil.get_arg(
            op, MaceKeyword.mace_min_size_str).floats  # noqa
        max_size = ConverterUtil.get_arg(
            op, MaceKeyword.mace_max_size_str).floats  # noqa
        aspect_ratio = ConverterUtil.get_arg(
            op, MaceKeyword.mace_aspect_ratio_str).floats  # noqa
        num_prior = len(aspect_ratio) * len(min_size) + len(max_size)

        output_shape[2] = num_prior * input_h * input_w * 4
        self.add_output_shape(op, [output_shape])
Пример #17
0
    def init_multi_net_def_info(self, multi_net_def):
        netdefs = multi_net_def.net_def
        self.net_num = len(netdefs)
        self.net_defs = [None] * self.net_num
        self.net_op_nums = [0] * self.net_num
        self.quantizes = [False] * self.net_num
        self.hexagons = [False] * self.net_num
        for net_def in netdefs:
            order = net_def.infer_order
            self.net_defs[order] = net_def
            self.net_op_nums[order] = len(net_def.op)
            is_quantize = ConverterUtil.get_arg(
                net_def, MaceKeyword.mace_quantize_flag_arg_str)
            self.quantizes[order] = \
                False if is_quantize is None else is_quantize.i == 1
            self.hexagons[order] = \
                self.quantizes[order] and \
                (net_def.op[-1].type == HexagonOp.DequantizeOUTPUT_8tof.name or
                 net_def.op[-1].type == HexagonOp.OUTPUT.name)

        self.end_index = self.start_index = 0
        for op_num in self.net_op_nums:
            self.end_index = self.end_index + op_num
        self.start_net_idx = 0
        self.start_op_idx = 0
        self.end_net_idx = self.net_num
        self.end_op_idx = self.net_op_nums[self.end_net_idx - 1]
Пример #18
0
 def run(self):
     if self._option.quantize:
         self.use_quant_in_out()
     self.add_op_output_type()
     self.ensure_bias_vector()
     self.ensure_binary_input()
     self.common_check()
     if ConverterUtil.get_arg(self._model,
                              MaceKeyword.mace_framework_type_str).i == \
        FrameworkType.TENSORFLOW.value:
         self.add_tensorflow_padding_value()
     # Calculate the number of apu constant tensors
     # Any tensors which will be apu constant tensors should be added
     # above this line
     const_data_num_arg = self._model.arg.add()
     const_data_num_arg.name = MaceKeyword.mace_const_data_num_arg_str
     const_data_num_arg.i = len(self._model.tensors)
     apu_data_type_arg = self._model.arg.add()
     apu_data_type_arg.name = MaceKeyword.mace_apu_data_type_arg_str
     if self._option.quantize_schema == 'mace_apu_16bit_per_tensor':
         apu_data_type_arg.i = mace_pb2.DT_INT16
     elif self._option.quantize:
         apu_data_type_arg.i = mace_pb2.DT_UINT8
     else:
         apu_data_type_arg.i = mace_pb2.DT_FLOAT
     self.convert_ops()
     self.add_node_id()
     return self._model
Пример #19
0
 def __init__(self, option, model, quantize_activation_info):
     self._option = option
     self._model = model
     self._new_ops = []
     self._consts = {}
     self._producers = {}
     self._quantize_activation_info = quantize_activation_info
     self._op_converters = {
         MaceOp.Activation.name: self.convert_activation,
         MaceOp.BatchNorm.name: self.convert_batchnorm,
         MaceOp.BatchToSpaceND.name: self.convert_batchspace,
         MaceOp.Concat.name: self.convert_concat,
         MaceOp.Conv2D.name: self.convert_conv2d,
         MaceOp.Deconv2D.name: self.convert_deconv2d,
         MaceOp.DepthToSpace.name: self.convert_depthspace,
         MaceOp.DepthwiseConv2d.name: self.convert_conv2d,
         MaceOp.Dequantize.name: self.convert_dequantize,
         MaceOp.Eltwise.name: self.convert_elementwise,
         MaceOp.ExpandDims.name: self.convert_expanddims,
         MaceOp.FullyConnected.name: self.convert_fullyconnected,
         MaceOp.Pad.name: self.convert_pad,
         MaceOp.Pooling.name: self.convert_pooling,
         MaceOp.Quantize.name: self.convert_quantize,
         MaceOp.Reduce.name: self.convert_reduce,
         MaceOp.ResizeBilinear.name: self.convert_resizebilinear,
         MaceOp.ResizeNearestNeighbor.name:
         self.convert_resizenearestneighbor,
         MaceOp.Softmax.name: self.convert_softmax,
         MaceOp.Split.name: self.convert_split,
         MaceOp.StridedSlice.name: self.convert_stridedslice,
         MaceOp.SpaceToBatchND.name: self.convert_batchspace,
         MaceOp.SpaceToDepth.name: self.convert_depthspace,
     }
     self._framework_type = ConverterUtil.get_arg(
         self._model, MaceKeyword.mace_framework_type_str).i
Пример #20
0
    def add_deconv_pad_node(self, op):
        padding_type_arg = \
            ConverterUtil.get_arg(op, MaceKeyword.mace_padding_type_str)
        mace_check(padding_type_arg is not None, "Missing padding of Deconv.")
        padding_type = PaddingMode(padding_type_arg.i)
        filter_tensor = self._consts[op.input[1]]
        filter_height = filter_tensor.dims[1]
        filter_width = filter_tensor.dims[2]

        if padding_type == PaddingMode.VALID:
            paddings = [0, 0, 0, 0]
        elif padding_type == PaddingMode.SAME:
            pad_height, pad_width = filter_height // 2, filter_width // 2
            paddings = [pad_height, pad_height, pad_width, pad_width]
        else:
            raise Exception('Hexagon deconv does not support padding type: ',
                            padding_type)

        padding_tensor = self._model.tensors.add()
        padding_tensor.name = op.name + "/paddings:0"
        padding_tensor.data_type = mace_pb2.DT_INT32
        padding_tensor.dims.extend([1, 1, 2, 2])
        padding_tensor.int32_data.extend(paddings)

        self._consts[padding_tensor.name] = padding_tensor
        op.input.append(padding_tensor.name)
Пример #21
0
    def convert_deconv2d(self, op):
        if self._framework_type == FrameworkType.TENSORFLOW.value:
            if len(op.input) < 4:
                bias = self.add_bias(op)
            else:
                bias = op.input.pop()
            op.input.pop()  # output shape
        else:
            if len(op.input) < 3:
                bias = self.add_bias(op)
            else:
                bias = op.input.pop()

        self.add_min_max_const_node(op, op.input[0])
        self.add_min_max_const_node(op, op.input[1])

        self.add_deconv_pad_node(op)

        strides_arg = ConverterUtil.get_arg(op, MaceKeyword.mace_strides_str)
        mace_check(strides_arg is not None, "Missing strides of Deconv.")
        self.add_arg_const_node(
            op, '/strides:0', [1, strides_arg.ints[0], strides_arg.ints[1], 1])

        op.input.append(bias)
        self.add_min_max_const_node(op, bias)
        self.add_min_max_const_node(op, op.output[0], True, True, False)

        op.type = HexagonOp.QuantizedTransposeConv2d_8x8p32to8.name
Пример #22
0
    def convert_pad(self, op):
        self.add_min_max_const_node(op, op.input[0])

        paddings = ConverterUtil.get_arg(
            op, MaceKeyword.mace_paddings_str).ints
        self.add_arg_const_node(
            op, '/paddings:0', [1, 1, len(paddings) // 2, 2], paddings)

        pad_type = ConverterUtil.get_arg(op, MaceKeyword.mace_pad_type_str).i
        mace_check(pad_type == PadType.CONSTANT.value,
                   "Hexagon only supports constant pad")
        constant_value = ConverterUtil.get_arg(
            op, MaceKeyword.mace_constant_value_str).f
        self.add_scalar_const_node('/constant_value:0', constant_value, op)

        op.type = HexagonOp.QuantizedPad_8.name
Пример #23
0
    def convert_deconv2d(self, op):
        channels = op.output_shape[0].dims[3]
        if len(op.input) < 4:
            print('Hexagon deconv requires biasadd, we add it.')
            bias_data = np.zeros(channels, dtype=int)
            bias_tensor = self._model.tensors.add()
            bias_tensor.data_type = mace_pb2.DT_INT32
            bias_tensor.dims.extend([channels])
            bias_tensor.int32_data.extend(bias_data)
            bias_tensor.minval = 0
            bias_tensor.maxval = 0
            bias_tensor.name = op.name + "/bias:0"
            bias = bias_tensor.name
            self._consts[bias] = bias_tensor
        else:
            bias = op.input.pop()
        op.input.pop()  # output shape

        self.add_min_max_const_node(op, op.input[0])
        self.add_min_max_const_node(op, op.input[1])

        self.add_deconv_pad_node(op)

        strides_arg = ConverterUtil.get_arg(op, MaceKeyword.mace_strides_str)
        mace_check(strides_arg is not None, "Missing strides of Deconv.")
        self.add_arg_const_node(
            op, '/strides:0', [1, strides_arg.ints[0], strides_arg.ints[1], 1])

        op.input.append(bias)
        self.add_min_max_const_node(op, bias)
        self.add_min_max_const_node(op, op.output[0], True, True, False)

        op.type = HexagonOp.QuantizedTransposeConv2d_8x8p32to8.name
Пример #24
0
    def convert_pooling(self, op):
        self.add_min_max_const_node(op, op.input[0])

        window_arg = ConverterUtil.get_arg(op, MaceKeyword.mace_kernel_str)
        self.add_arg_const_node(op, '/window:0',
                                [1, window_arg.ints[0], window_arg.ints[1], 1])
        strides_arg = ConverterUtil.get_arg(op, MaceKeyword.mace_strides_str)
        self.add_arg_const_node(
            op, '/strides:0', [1, strides_arg.ints[0], strides_arg.ints[1], 1])

        pooling_type_arg = ConverterUtil.get_arg(
            op, MaceKeyword.mace_pooling_type_str)
        if PoolingType(pooling_type_arg.i) == PoolingType.AVG:
            op.type = HexagonOp.QuantizedAvgPool_8.name
        else:
            op.type = HexagonOp.QuantizedMaxPool_8.name
Пример #25
0
    def convert_conv2d(self, op):
        channels = op.output_shape[0].dims[3]
        if len(op.input) < 3:
            print('Supernode requires biasadd, we add it.')
            bias_data = np.zeros(channels, dtype=int)
            bias_tensor = self._model.tensors.add()
            bias_tensor.data_type = mace_pb2.DT_INT32
            bias_tensor.dims.extend([channels])
            bias_tensor.int32_data.extend(bias_data)
            bias_tensor.minval = 0
            bias_tensor.maxval = 0
            bias_tensor.name = op.name + "/bias:0"
            bias = bias_tensor.name
            self._consts[bias] = bias_tensor
        else:
            bias = op.input.pop()

        self.add_min_max_const_node(op, op.input[0])
        self.add_min_max_const_node(op, op.input[1])

        strides_arg = ConverterUtil.get_arg(op, 'strides')
        mace_check(strides_arg is not None,
                   "Missing strides of Conv or Depthwise Conv.")
        self.add_arg_const_node(
            op, '/strides:0', [1, strides_arg.ints[0], strides_arg.ints[1], 1])

        op.input.append(bias)
        self.add_min_max_const_node(op, bias)
        self.add_min_max_const_node(op, op.output[0], True, True, False)

        if op.type == MaceOp.DepthwiseConv2d.name:
            op.type = HexagonOp.DepthwiseSupernode_8x8p32to8.name
        else:
            op.type = HexagonOp.Supernode_8x8p32to8.name
Пример #26
0
    def convert_filters_format(self):
        arg_format = ConverterUtil.get_arg(self.net_def,
                                           MaceKeyword.mace_filter_format_str)
        if (arg_format.i == DataFormat.OHWI.value):
            return

        mace_check(arg_format.i == DataFormat.OIHW.value, "Invalid model")
        arg_format.i = DataFormat.OHWI.value

        transposed_filter = set()
        for op in self.net_def.op:
            # OIHW => OHWI
            if (op.type == MaceOp.Conv2D.name or
                op.type == MaceOp.DepthwiseConv2d.name or
                op.type == MaceOp.FullyConnected.name) and \
                    op.input[1] not in transposed_filter:
                print("transform filter: %s" % op.type)
                filter = self._consts[op.input[1]]
                tensor_data = np.frombuffer(self.weight_bytes, self.data_type,
                                            filter.data_size, filter.offset)
                filter_data = np.array(tensor_data).reshape(filter.dims) \
                    .transpose(0, 2, 3, 1)
                filter_bytes = np.array(filter_data).tobytes()
                slice_end = filter.offset + len(filter_bytes)
                self.model_weights[filter.offset:slice_end] = filter_bytes
                filter.dims[:] = filter_data.shape
                transposed_filter.add(op.input[1])
Пример #27
0
 def infer_shape_slice(self, op):
     output_shape = self._output_shape_cache[op.input[0]]
     axis = ConverterUtil.get_arg(op, MaceKeyword.mace_axis_str).i
     output_shape[axis] /= len(op.output)
     output_shapes = []
     for _ in op.output:
         output_shapes.append(output_shape)
     self.add_output_shape(op, output_shapes)
Пример #28
0
 def infer_shape_transpose(self, op):
     input_shape = self._output_shape_cache[op.input[0]]
     output_shape = np.zeros(len(input_shape), dtype=np.int32)
     dims_arg = ConverterUtil.get_arg(op, MaceKeyword.mace_dims_str)
     dims_ints = dims_arg.ints
     for idx in range(len(dims_ints)):
         output_shape[idx] = input_shape[dims_ints[idx]]
     self.add_output_shape(op, [output_shape])
Пример #29
0
 def infer_shape_crop(self, op):
     mace_check(len(op.input) == 2, "crop layer needs two inputs")
     output_shape = self._output_shape_cache[op.input[0]]
     input1_shape = self._output_shape_cache[op.input[1]]
     offsets = ConverterUtil.get_arg(op, MaceKeyword.mace_offset_str).ints
     for i in range(len(offsets)):
         if offsets[i] >= 0:
             output_shape[i] = input1_shape[i]
     self.add_output_shape(op, [output_shape])
Пример #30
0
 def convert_instancenorm(self, op):
     affine = ConverterUtil.get_arg(op, MaceKeyword.mace_affine_str).i
     if not affine:
         del op.input[1:]
         self.add_min_max_const_node(op, op.input[0])
         op.type = HexagonOp.QuantizedInstanceNorm_8.name
     else:
         mace_check(False,
                    "Hexagon does not support instancenorm with affine")