Пример #1
0
#!/usr/bin/python

'''
    developed by hp_carrot
    2013-10-31
    a method that comes better than NearestNeighborsCentroid method 
    with about 90% precision , and with 90.18% test precision on Kaggle
'''

from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics
import transform_data_to_format as tdtf

train_x , train_y = tdtf.read_data_to_ndarray("../data/train.csv",2000)
test_x = tdtf.read_test_data_to_ndarray("../data/test.csv",28000)
#valid_x , valid_y = tdtf.read_data_to_ndarray("../data/valid.csv",10000)
clf = KNeighborsClassifier(n_neighbors=5)
clf.fit(train_x,train_y)
#pred_train_y = clf.predict(train_x)
#pred_valid_y = clf.predict(valid_x)
pred_test_y = clf.predict(test_x)
'''
print("Classification report for classifier %s:\n%s\n"
      % (clf , metrics.classification_report(train_y , pred_train_y )))
print("Confusion matrix:\n%s" % metrics.confusion_matrix(train_y , pred_train_y ))
print("Classification report for classifier %s:\n%s\n"
      % (clf , metrics.classification_report(valid_y , pred_valid_y )))
print("Confusion matrix:\n%s" % metrics.confusion_matrix(valid_y , pred_valid_y ))
'''
tdtf.write_to_csv(pred_test_y,"../data/MNIST_KNearestNeighbors.out")
Пример #2
0
    with about 90% precision , and using 2000 training data , we get with 90.18% test precision on Kaggle
    modified by hp_carrot
    2013-11-03
    with 40000 training we get 96.514% score , which is good !!!!
'''

from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics
import transform_data_to_format as tdtf

train_x, train_y = tdtf.read_data_to_ndarray("../data/train.csv", 40000)
test_x = tdtf.read_test_data_to_ndarray("../data/test.csv", 28000)
#valid_x , valid_y = tdtf.read_data_to_ndarray("../data/valid.csv",10000)
clf = KNeighborsClassifier(n_neighbors=10)
print "fitting"
clf.fit(train_x, train_y)
#pred_train_y = clf.predict(train_x)
#pred_valid_y = clf.predict(valid_x)
print "predicting"
pred_test_y = clf.predict(test_x)
'''
print("Classification report for classifier %s:\n%s\n"
      % (clf , metrics.classification_report(train_y , pred_train_y )))
print("Confusion matrix:\n%s" % metrics.confusion_matrix(train_y , pred_train_y ))
print("Classification report for classifier %s:\n%s\n"
      % (clf , metrics.classification_report(valid_y , pred_valid_y )))
print("Confusion matrix:\n%s" % metrics.confusion_matrix(valid_y , pred_valid_y ))
'''
print "writing to file"
tdtf.write_to_csv(pred_test_y, "../data/MNIST_KNearestNeighbors.out")
Пример #3
0
def evaluate_lenet5(learning_rate=0.1,
                    n_epochs=10,
                    dataset=DataHome,
                    nkerns=[20, 50],
                    batch_size=50):
    """ Demonstrates lenet on MNIST dataset

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
                          gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: path to the dataset used for training /testing (MNIST here)

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer
    """

    rng = numpy.random.RandomState(23455)

    datasets = load_data.load_data(dataset)

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches /= batch_size
    n_valid_batches /= batch_size
    n_test_batches /= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch
    x = T.matrix('x')  # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
    # [int] labels

    ishape = (92, 92)  # this is the size of dog/cat images

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print '... building the model'

    # Reshape matrix of rasterized images of shape (batch_size,28*28)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    layer0_input = x.reshape((batch_size, 1, 92, 92))

    # Construct the first convolutional pooling layer:
    # filtering reduces the image size to (28-5+1,28-5+1)=(24,24)
    # maxpooling reduces this further to (24/2,24/2) = (12,12)
    # 4D output tensor is thus of shape (batch_size,nkerns[0],12,12)
    layer0 = LeNetConvPoolLayer(rng,
                                input=layer0_input,
                                image_shape=(batch_size, 1, 92, 92),
                                filter_shape=(nkerns[0], 1, 13, 13),
                                poolsize=(4, 4))

    # Construct the second convolutional pooling layer
    # filtering reduces the image size to (12-5+1,12-5+1)=(8,8)
    # maxpooling reduces this further to (8/2,8/2) = (4,4)
    # 4D output tensor is thus of shape (nkerns[0],nkerns[1],4,4)
    layer1 = LeNetConvPoolLayer(rng,
                                input=layer0.output,
                                image_shape=(batch_size, nkerns[0], 20, 20),
                                filter_shape=(nkerns[1], nkerns[0], 5, 5),
                                poolsize=(4, 4))

    # the TanhLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size,num_pixels) (i.e matrix of rasterized images).
    # This will generate a matrix of shape (20,32*4*4) = (20,512)
    layer2_input = layer1.output.flatten(2)

    # construct a fully-connected sigmoidal layer
    layer2 = HiddenLayer(rng,
                         input=layer2_input,
                         n_in=nkerns[1] * 4 * 4,
                         n_out=100,
                         activation=T.tanh)

    # classify the values of the fully-connected sigmoidal layer
    layer3 = LogisticRegression(input=layer2.output, n_in=100, n_out=2)

    # the cost we minimize during training is the NLL of the model
    cost = layer3.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size]
        })

    test_results = theano.function(
        inputs=[index],
        outputs=layer3.y_pred,
        givens={
            x: test_set_x[index * batch_size:(index + 1) * batch_size],
            y: test_set_y[index * batch_size:(index + 1) * batch_size]
        })

    validate_model = theano.function(
        [index],
        layer3.errors(y),
        givens={
            x: valid_set_x[index * batch_size:(index + 1) * batch_size],
            y: valid_set_y[index * batch_size:(index + 1) * batch_size]
        })

    # create a list of all model parameters to be fit by gradient descent
    params = layer3.params + layer2.params + layer1.params + layer0.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i],grads[i]) pairs.
    updates = []
    for param_i, grad_i in zip(params, grads):
        updates.append((param_i, param_i - learning_rate * grad_i))

    train_model = theano.function(
        [index],
        cost,
        updates=updates,
        givens={
            x: train_set_x[index * batch_size:(index + 1) * batch_size],
            y: train_set_y[index * batch_size:(index + 1) * batch_size]
        })

    ###############
    # TRAIN MODEL #
    ###############
    print '... training'
    # early-stopping parameters
    patience = 10000  # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is
    # found
    improvement_threshold = 0.995  # a relative improvement of this much is
    # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
    # go through this many
    # minibatche before checking the network
    # on the validation set; in this case we
    # check every epoch

    best_params = None
    best_validation_loss = numpy.inf
    best_iter = 0
    test_score = 0.
    start_time = time.clock()

    epoch = 0
    done_looping = False

    while (epoch < n_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in xrange(n_train_batches):

            iter = (epoch - 1) * n_train_batches + minibatch_index

            if iter % 100 == 0:
                print 'training @ iter = ', iter, ' patience = ', patience
            cost_ij = train_model(minibatch_index)

            if (iter + 1) % validation_frequency == 0:

                # compute zero-one loss on validation set
                validation_losses = [
                    validate_model(i) for i in xrange(n_valid_batches)
                ]
                this_validation_loss = numpy.mean(validation_losses)
                print('epoch %i, minibatch %i/%i, validation error %f %%' % \
                      (epoch, minibatch_index + 1, n_train_batches, \
                       this_validation_loss * 100.))

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:

                    #improve patience if loss improvement is good enough
                    if this_validation_loss < best_validation_loss *  \
                       improvement_threshold:
                        patience = max(patience, iter * patience_increase)

                    # save best validation score and iteration number
                    best_validation_loss = this_validation_loss
                    best_iter = iter

                    # test it on the test set
                    test_losses = [
                        test_model(i) for i in xrange(n_test_batches)
                    ]
                    test_score = numpy.mean(test_losses)
                    print(
                        ('     epoch %i, minibatch %i/%i, test error of best '
                         'model %f %%') % (epoch, minibatch_index + 1,
                                           n_train_batches, test_score * 100.))

            if patience <= iter:
                done_looping = True
                break

    end_time = time.clock()
    print "writing test results"
    test_res = [test_results(i) for i in xrange(n_test_batches)]
    a = []
    for i in range(len(test_res)):
        for ele in test_res[i]:
            a.append(ele)

    print a, n_test_batches
    tdtf.write_to_csv(a, DataHome + 'pringle_DogVsCat_conv.csv')
    print('Optimization complete.')
    print('Best validation score of %f %% obtained at iteration %i,'\
          'with test performance %f %%' %
          (best_validation_loss * 100., best_iter + 1, test_score * 100.))
    print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((end_time - start_time) / 60.))
Пример #4
0
import transform_data_to_format as tdtf

DataHome = "/home/hphp/Documents/data/Kaggle/DogVsCatData/"
test_data_set_route = DataHome + "test.csv"

print "reading test data"
start_sec = time.time()
test_set = tdtf.read_csv_data_to_int_list(test_data_set_route, None, 0)
test_set_x, test_set_y = test_set
print len(test_set_x)
end_sec = time.time()
print 'practical reading data time : %.2fm ' % ((end_sec - start_sec) / 60.)

start_sec = time.time()
print "loading svm classifier from joblib"
classifier = joblib.load(DataHome + 'svm_svc_pkl/svm.svc.pkl', mmap_mode='c')
end_sec = time.time()
print 'practical loading svm time : %.2fm ' % ((end_sec - start_sec) / 60.)

start_sec = time.time()
print "predicting"
pred_test_y = classifier.predict(test_set_x)
end_sec = time.time()
print 'practical predicting time : %.2fm ' % ((end_sec - start_sec) / 60.)

start_sec = time.time()
print "predicting"
tdtf.write_to_csv(pred_test_y, DataHome + "DogVsCat.svm.svc.csv")
end_sec = time.time()
print 'practical writting to csv time : %.2fm ' % ((end_sec - start_sec) / 60.)
Пример #5
0
def evaluate_lenet5(learning_rate=0.1, n_epochs=10,
                    dataset=DataHome,
                    nkerns=[20, 50], batch_size=50):
    """ Demonstrates lenet on MNIST dataset

    :type learning_rate: float
    :param learning_rate: learning rate used (factor for the stochastic
                          gradient)

    :type n_epochs: int
    :param n_epochs: maximal number of epochs to run the optimizer

    :type dataset: string
    :param dataset: path to the dataset used for training /testing (MNIST here)

    :type nkerns: list of ints
    :param nkerns: number of kernels on each layer
    """

    rng = numpy.random.RandomState(23455)

    datasets = load_data.load_data(dataset)

    train_set_x, train_set_y = datasets[0]
    valid_set_x, valid_set_y = datasets[1]
    test_set_x, test_set_y = datasets[2]

    # compute number of minibatches for training, validation and testing
    n_train_batches = train_set_x.get_value(borrow=True).shape[0]
    n_valid_batches = valid_set_x.get_value(borrow=True).shape[0]
    n_test_batches = test_set_x.get_value(borrow=True).shape[0]
    n_train_batches /= batch_size
    n_valid_batches /= batch_size
    n_test_batches /= batch_size

    # allocate symbolic variables for the data
    index = T.lscalar()  # index to a [mini]batch
    x = T.matrix('x')   # the data is presented as rasterized images
    y = T.ivector('y')  # the labels are presented as 1D vector of
                        # [int] labels

    ishape = (92 ,92)  # this is the size of dog/cat images

    ######################
    # BUILD ACTUAL MODEL #
    ######################
    print '... building the model'

    # Reshape matrix of rasterized images of shape (batch_size,28*28)
    # to a 4D tensor, compatible with our LeNetConvPoolLayer
    layer0_input = x.reshape((batch_size, 1, 92, 92))

    # Construct the first convolutional pooling layer:
    # filtering reduces the image size to (28-5+1,28-5+1)=(24,24)
    # maxpooling reduces this further to (24/2,24/2) = (12,12)
    # 4D output tensor is thus of shape (batch_size,nkerns[0],12,12)
    layer0 = LeNetConvPoolLayer(rng, input=layer0_input,
            image_shape=(batch_size, 1, 92, 92),
            filter_shape=(nkerns[0], 1, 13, 13), poolsize=(4, 4))

    # Construct the second convolutional pooling layer
    # filtering reduces the image size to (12-5+1,12-5+1)=(8,8)
    # maxpooling reduces this further to (8/2,8/2) = (4,4)
    # 4D output tensor is thus of shape (nkerns[0],nkerns[1],4,4)
    layer1 = LeNetConvPoolLayer(rng, input=layer0.output,
            image_shape=(batch_size, nkerns[0], 20, 20),
            filter_shape=(nkerns[1], nkerns[0], 5, 5), poolsize=(4, 4))

    # the TanhLayer being fully-connected, it operates on 2D matrices of
    # shape (batch_size,num_pixels) (i.e matrix of rasterized images).
    # This will generate a matrix of shape (20,32*4*4) = (20,512)
    layer2_input = layer1.output.flatten(2)

    # construct a fully-connected sigmoidal layer
    layer2 = HiddenLayer(rng, input=layer2_input, n_in=nkerns[1] * 4 * 4,
                         n_out=100, activation=T.tanh)

    # classify the values of the fully-connected sigmoidal layer
    layer3 = LogisticRegression(input=layer2.output, n_in=100, n_out=2)

    # the cost we minimize during training is the NLL of the model
    cost = layer3.negative_log_likelihood(y)

    # create a function to compute the mistakes that are made by the model
    test_model = theano.function([index], layer3.errors(y),
            givens={
                x: test_set_x[index * batch_size: (index + 1) * batch_size],
                y: test_set_y[index * batch_size: (index + 1) * batch_size]})

    test_results = theano.function(inputs=[index],
            outputs= layer3.y_pred,
            givens={
                x: test_set_x[index * batch_size: (index + 1) * batch_size],
                y: test_set_y[index * batch_size: (index + 1) * batch_size]})

    validate_model = theano.function([index], layer3.errors(y),
            givens={
                x: valid_set_x[index * batch_size: (index + 1) * batch_size],
                y: valid_set_y[index * batch_size: (index + 1) * batch_size]})

    # create a list of all model parameters to be fit by gradient descent
    params = layer3.params + layer2.params + layer1.params + layer0.params

    # create a list of gradients for all model parameters
    grads = T.grad(cost, params)

    # train_model is a function that updates the model parameters by
    # SGD Since this model has many parameters, it would be tedious to
    # manually create an update rule for each model parameter. We thus
    # create the updates list by automatically looping over all
    # (params[i],grads[i]) pairs.
    updates = []
    for param_i, grad_i in zip(params, grads):
        updates.append((param_i, param_i - learning_rate * grad_i))

    train_model = theano.function([index], cost, updates=updates,
          givens={
            x: train_set_x[index * batch_size: (index + 1) * batch_size],
            y: train_set_y[index * batch_size: (index + 1) * batch_size]})

    ###############
    # TRAIN MODEL #
    ###############
    print '... training'
    # early-stopping parameters
    patience = 10000 # look as this many examples regardless
    patience_increase = 2  # wait this much longer when a new best is
                           # found
    improvement_threshold = 0.995  # a relative improvement of this much is
                                   # considered significant
    validation_frequency = min(n_train_batches, patience / 2)
                                  # go through this many
                                  # minibatche before checking the network
                                  # on the validation set; in this case we
                                  # check every epoch

    best_params = None
    best_validation_loss = numpy.inf
    best_iter = 0
    test_score = 0.
    start_time = time.clock()

    epoch = 0
    done_looping = False

    while (epoch < n_epochs) and (not done_looping):
        epoch = epoch + 1
        for minibatch_index in xrange(n_train_batches):

            iter = (epoch - 1) * n_train_batches + minibatch_index

            if iter % 100 == 0:
                print 'training @ iter = ', iter , ' patience = ' , patience
            cost_ij = train_model(minibatch_index)

            if (iter + 1) % validation_frequency == 0:

                # compute zero-one loss on validation set
                validation_losses = [validate_model(i) for i
                                     in xrange(n_valid_batches)]
                this_validation_loss = numpy.mean(validation_losses)
                print('epoch %i, minibatch %i/%i, validation error %f %%' % \
                      (epoch, minibatch_index + 1, n_train_batches, \
                       this_validation_loss * 100.))

                # if we got the best validation score until now
                if this_validation_loss < best_validation_loss:

                    #improve patience if loss improvement is good enough
                    if this_validation_loss < best_validation_loss *  \
                       improvement_threshold:
                        patience = max(patience, iter * patience_increase)

                    # save best validation score and iteration number
                    best_validation_loss = this_validation_loss
                    best_iter = iter

                    # test it on the test set
                    test_losses = [test_model(i) for i in xrange(n_test_batches)]
                    test_score = numpy.mean(test_losses)
                    print(('     epoch %i, minibatch %i/%i, test error of best '
                           'model %f %%') %
                          (epoch, minibatch_index + 1, n_train_batches,
                           test_score * 100.))

            if patience <= iter:
                done_looping = True
                break

    end_time = time.clock()
    print "writing test results"
    test_res = [test_results(i)
        for i in xrange(n_test_batches)]
    a = []
    for i in range(len(test_res)):
        for ele in test_res[i]:
            a.append(ele)

    print a,n_test_batches
    tdtf.write_to_csv(a,DataHome + 'pringle_DogVsCat_conv.csv')
    print('Optimization complete.')
    print('Best validation score of %f %% obtained at iteration %i,'\
          'with test performance %f %%' %
          (best_validation_loss * 100., best_iter + 1, test_score * 100.))
    print >> sys.stderr, ('The code for file ' +
                          os.path.split(__file__)[1] +
                          ' ran for %.2fm' % ((end_time - start_time) / 60.))
Пример #6
0
DataHome = "/home/hphp/Documents/data/Kaggle/DogVsCatData/"
test_data_set_route = DataHome + "test.csv"

print "reading test data"
start_sec = time.time()
test_set = tdtf.read_csv_data_to_int_list(test_data_set_route,None,0)
test_set_x , test_set_y = test_set
print len(test_set_x)
end_sec = time.time()
print 'practical reading data time : %.2fm ' % ((end_sec - start_sec) / 60.)

start_sec = time.time()
print "loading svm classifier from joblib"
classifier = joblib.load(DataHome + 'svm_svc_pkl/svm.svc.pkl' , mmap_mode = 'c')
end_sec = time.time()
print 'practical loading svm time : %.2fm ' % ((end_sec - start_sec) / 60.)


start_sec = time.time()
print "predicting"
pred_test_y = classifier.predict(test_set_x)
end_sec = time.time()
print 'practical predicting time : %.2fm ' % ((end_sec - start_sec) / 60.)


start_sec = time.time()
print "predicting"
tdtf.write_to_csv(pred_test_y,DataHome + "DogVsCat.svm.svc.csv")
end_sec = time.time()
print 'practical writting to csv time : %.2fm ' % ((end_sec - start_sec) / 60.)