def add_model_specific_args(parser, root_dir): # Add NER specific options BaseTransformer.add_model_specific_args(parser, root_dir) parser.add_argument( "--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument( "--task", default="", type=str, required=True, help="The GLUE task to run", ) parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.", ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument( "--tags", nargs='+', type=str, help="experiment tags for neptune.ai", default=['FT', 'last-layer'] ) return parser
def add_model_specific_args(parser, root_dir): # Add NER specific options BaseTransformer.add_model_specific_args(parser, root_dir) parser.add_argument( "--max_seq_length", default=128, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument( "--task", default="", type=str, required=True, help="The GLUE task to run", ) parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the training files for the CoNLL-2003 NER task.", ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) # parser.add_argument("-n", "--n_gpu", nargs='+', type=int, default=[2], help="specified device number") # parser.add_argument('-a', '--arg', nargs='+', type=int, default=[1, 2, 3]) parser.add_argument( "--vocab_file", default="th_wiki_bpe/th.wiki.bpe.op25000.vocab", type=str, help="vocab_file", ) parser.add_argument( "--spm_file", default="th_wiki_bpe/th.wiki.bpe.op25000.model", type=str, help="Tspm_file", ) return parser
def add_model_specific_args(parser, root_dir): # Add NER specific options BaseTransformer.add_model_specific_args(parser, root_dir) parser.add_argument( "--max_seq_length", default=128, type=int, help= "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument( "--labels", default="", type=str, help= "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.", ) parser.add_argument( "--data_dir", default=None, type=str, required=True, help= "The input data dir. Should contain the training files for the CoNLL-2003 NER task.", ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") return parser
def add_model_specific_args(parser, root_dir): BaseTransformer.add_model_specific_args(parser, root_dir) # Add BART specific options parser.add_argument( "--max_source_length", default=1024, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument( "--max_target_length", default=56, type=int, help="The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument( "--data_dir", default=None, type=str, required=True, help="The input data dir. Should contain the dataset files for the CNN/DM summarization task.", ) return parser
def add_model_specific_args(parser, root_dir): BaseTransformer.add_model_specific_args(parser, root_dir) # Add BART specific options parser.add_argument( "--max_seq_length", default=50, type=int, help= "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded.", ) parser.add_argument( "--data_dir", default=None, type=str, required=True, help= "The input data dir. Should contain the dataset files for the CNN/DM summarization task.", ) parser.add_argument( '--model_state', type=Path, help="Specify a .ckpt file to start training from that state." " Note: This not designed for resuming training from checkpoint but for doing pretraining/curriculum learning" ) return parser