from huggingface_hub import Repository from transformers import ( CONFIG_MAPPING, MODEL_MAPPING, AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer, DataCollatorForSeq2Seq, SchedulerType, get_scheduler, ) from transformers.utils import check_min_version, get_full_repo_name, is_offline_mode, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.22.0.dev0") logger = get_logger(__name__) require_version( "datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt") # You should update this to your particular problem to have better documentation of `model_type` MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) try: nltk.data.find("tokenizers/punkt") except (LookupError, OSError): if is_offline_mode(): raise LookupError(
from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizerFast, TFAutoModelForQuestionAnswering, TFTrainingArguments, set_seed, ) from transformers.file_utils import CONFIG_NAME, TF2_WEIGHTS_NAME from transformers.utils import check_min_version from utils_qa import postprocess_qa_predictions # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.16.0.dev0") logger = logging.getLogger(__name__) # region Arguments @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={ "help": "Path to pretrained model or model identifier from huggingface.co/models"
AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, PretrainedConfig, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process from transformers.utils import check_min_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.5.0") task_to_keys = { "cola": ("sentence", None), "mnli": ("premise", "hypothesis"), "mrpc": ("sentence1", "sentence2"), "qnli": ("question", "sentence"), "qqp": ("question1", "question2"), "rte": ("sentence1", "sentence2"), "sst2": ("sentence", None), "stsb": ("sentence1", "sentence2"), "wnli": ("sentence1", "sentence2"), } logger = logging.getLogger(__name__)
MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForLanguageModeling, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.10.0") require_version( "datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt", ) logger = logging.getLogger(__name__) MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process from transformers.utils import check_min_version # added these lines import config_train import configuration config_repository = configuration.Config() # end lines # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.6.0") logger = logging.getLogger(__name__) MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. """ model_name_or_path: Optional[str] = field( default=None, metadata={
import transformers from transformers import ( # Trainer,; TrainingArguments, AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, PretrainedConfig, default_data_collator, set_seed, ) # Will import SageMaker Model parallelism specific Trainer from transformers.sagemaker import SageMakerTrainer as Trainer from transformers.sagemaker import SageMakerTrainingArguments as TrainingArguments from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.4.2") task_to_keys = { "cola": ("sentence", None), "mnli": ("premise", "hypothesis"), "mrpc": ("sentence1", "sentence2"), "qnli": ("question", "sentence"), "qqp": ("question1", "question2"), "rte": ("sentence1", "sentence2"), "sst2": ("sentence", None), "stsb": ("sentence1", "sentence2"), "wnli": ("sentence1", "sentence2"), } logger = logging.getLogger(__name__)
AutoModelForSeq2SeqLM, AutoTokenizer, DataCollatorForSeq2Seq, HfArgumentParser, Seq2SeqTrainer, Seq2SeqTrainingArguments, default_data_collator, set_seed, ) from transformers.file_utils import is_offline_mode from transformers.trainer_utils import get_last_checkpoint, is_main_process from transformers.utils import check_min_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.4.0") logger = logging.getLogger(__name__) try: nltk.data.find("tokenizers/punkt") except (LookupError, OSError): if is_offline_mode(): raise LookupError( "Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files" ) with FileLock(".lock") as lock: nltk.download("punkt", quiet=True) @dataclass
EvalPrediction, HfArgumentParser, PreTrainedTokenizerFast, QDQBertConfig, QDQBertForQuestionAnswering, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import SchedulerType, get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version from utils_qa import postprocess_qa_predictions # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.9.0") require_version( "datasets>=1.8.0", "To fix: pip install -r examples/pytorch/question-answering/requirements.txt" ) logger = logging.getLogger(__name__) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """
PreTrainedTokenizerBase, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process from transformers.utils import check_min_version import transformers from datasets import Dataset, load_dataset from enum import Enum import dataclasses from dataclasses import dataclass import logging import os import sys from typing import Union, Optional, Any check_min_version('4.7.0') class SpecialToken(Enum): SIMSEP = '<SIMSEP>' class SBert(nn.Module): """[Sentence-Bert] :param nn: [description] :type nn: [type] """ def __init__(self, bert_pretrained_name='bert-base-chinese',