def modelsConfig_qa(model): ## Question Answering: if model == "distilbert-base-cased-distilled-squad": #model_selected = qa_pipline("question-answering", model=f"{model}") model_selected = qa_pipeline('question-answering', model=f'./models/{model}/', tokenizer=f'./models/{model}/') elif model == "bert-large-uncased-whole-word-masking-finetuned-squad": #model_selected = qa_pipline("question-answering", model=f"{model}") model_selected = qa_pipeline('question-answering', model=f'./models/{model}/', tokenizer=f'./models/{model}/') # Multilingual: elif model == "mrm8488/bert-multi-cased-finetuned-xquadv1 [multilingual]": model = "bert-multi-cased-finetuned-xquadv1" #model_selected = qa_pipline("question-answering", model=f"{model}") model_selected = qa_pipeline('question-answering', model=f'./models/{model}/', tokenizer=f'./models/{model}/') else: raise Exception("Not a valid model") return model_selected
def modelsConfig_qa(model): ## Question Answering: if model == "ELMo-BiDAF (Trained on SQuAD)": model_selected = Predictor.from_path( "https://storage.googleapis.com/allennlp-public-models/bidaf-elmo-model-2020.03.19.tar.gz" ) elif model == "BiDAG (Trained on SQuAD)": model_selected = Predictor.from_path( "https://storage.googleapis.com/allennlp-public-models/bidaf-model-2020.03.19.tar.gz" ) elif model == "Transformer QA (Trained on SQuAD)": model_selected = Predictor.from_path( "https://storage.googleapis.com/allennlp-public-models/transformer-qa-2020-05-26.tar.gz" ) elif model == "distilbert-base-cased-distilled-squad": model_selected = qa_pipeline("question-answering", model=f"{model}") elif model == "bert-large-uncased-whole-word-masking-finetuned-squad": model_selected = qa_pipeline("question-answering", model=f"{model}") # Multilingual: elif model == "mrm8488/bert-multi-cased-finetuned-xquadv1 [multilingual]": model = "mrm8488/bert-multi-cased-finetuned-xquadv1" model_selected = qa_pipeline("question-answering", model=f"{model}") else: raise Exception("Not a valid model") return model_selected
from question_generation.pipelines import pipeline as qg_pipeline from transformers import pipeline as qa_pipeline from transformers import AutoTokenizer, AutoModelWithLMHead import os model_name_qa = 'distilbert-base-cased-distilled-squad' qa_pipeline('question-answering', model=f'./models/{model_name_qa}/', tokenizer=f'./models/{model_name_qa}/') model_name_qg = 'Question generation (without answer supervision) [small]' qg_pipeline("e2e-qg", model=f'./models/{model_name_qg}/', tokenizer=f'./models/{model_name_qg}/')