def __init__(self, config):
        from model_utils import ContextPooler
        super().__init__(config)
        self.deberta = DebertaModel(config)
        self.pooler = ContextPooler(config)

        self.init_weights()
Пример #2
0
def get_transformers_model(
    settings: Dict[str, Any],
    model_name: str,
    pretrained: bool = True,
    ckptdir: Optional[Path] = None,
) -> PreTrainedModel:
    model_path = model_name if pretrained else str(ckptdir)
    config = AutoConfig.from_pretrained(model_path)
    config.attention_probs_dropout_prob = settings.get(
        'encoder_attn_dropout_rate', 0.1)
    config.hidden_dropout_prob = settings.get('encoder_ffn_dropout_rate', 0.1)
    config.layer_norm_eps = settings.get('layer_norm_eps', 1e-5)

    if pretrained:
        model = AutoModel.from_pretrained(model_name, config=config)
        return model

    # if you want not parameters but only model structure, each model class is needed.
    if 'xlm' in model_name:
        model = XLMModel(config=config)
    elif 'albert' in model_name:
        model = AlbertModel(config=config)
    elif 'roberta' in model_name:
        model = RobertaModel(config=config)
    elif 'deberta-v2' in model_name:
        model = DebertaV2Model(config=config)
    elif 'deberta' in model_name:
        model = DebertaModel(config=config)
    elif 'bert' in model_name:
        model = BertModel(config=config)
    elif 'electra' in model_name:
        model = ElectraModel(config=config)
    else:
        model = BertModel(config=config)
    return model
Пример #3
0
def base_deberta():
    from transformers import DebertaTokenizer, DebertaModel
    tokenizer = DebertaTokenizer.from_pretrained('microsoft/deberta-base')
    model = DebertaModel.from_pretrained('microsoft/deberta-base')
    inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
    outputs = model(**inputs)
    last_hidden_states = outputs.last_hidden_state
    #输出最后一层的隐藏层状态
    print(last_hidden_states)
    def test_inference_no_head(self):
        model = DebertaModel.from_pretrained("microsoft/deberta-base")

        input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
        attention_mask = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
        output = model(input_ids, attention_mask=attention_mask)[0]
        # compare the actual values for a slice.
        expected_slice = torch.tensor(
            [[[-0.5986, -0.8055, -0.8462], [1.4484, -0.9348, -0.8059], [0.3123, 0.0032, -1.4131]]]
        )
        self.assertTrue(torch.allclose(output[:, 1:4, 1:4], expected_slice, atol=1e-4), f"{output[:, 1:4, 1:4]}")
Пример #5
0
    def test_inference_no_head(self):
        random.seed(0)
        np.random.seed(0)
        torch.manual_seed(0)
        torch.cuda.manual_seed_all(0)
        model = DebertaModel.from_pretrained("microsoft/deberta-base")

        input_ids = torch.tensor([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
        output = model(input_ids)[0]
        # compare the actual values for a slice.
        expected_slice = torch.tensor(
            [[[-0.0218, -0.6641, -0.3665], [-0.3907, -0.4716, -0.6640], [0.7461, 1.2570, -0.9063]]]
        )
        self.assertTrue(torch.allclose(output[:, :3, :3], expected_slice, atol=1e-4), f"{output[:, :3, :3]}")
Пример #6
0
 def __init__(self, config):
     super().__init__(config)
     self.num_labels = config.num_labels
     self.deberta = DebertaModel(config)
     self.dropout = nn.Dropout(config.hidden_dropout_prob)
     self.classifier = nn.Linear(config.hidden_size, config.num_labels)
     self.loss_fct = nn.CrossEntropyLoss()
     self.use_crf = config.use_crf
     if self.use_crf:
         self.crf_layer = Transformer_CRF(
             num_labels=config.num_labels,
             start_label_id=config.label2idx['CLS'])
     else:
         self.crf_layer = None
     self.init_weights()
    def create_and_check_deberta_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = DebertaModel(config=config)
        model.to(torch_device)
        model.eval()
        sequence_output = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)[0]
        sequence_output = model(input_ids, token_type_ids=token_type_ids)[0]
        sequence_output = model(input_ids)[0]

        self.parent.assertListEqual(list(sequence_output.size()), [self.batch_size, self.seq_length, self.hidden_size])
 def test_model_from_pretrained(self):
     for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
         model = DebertaModel.from_pretrained(model_name)
         self.assertIsNotNone(model)
Пример #9
0
 def __init__(self, config: DebertaConfig, model_path: str):
     super(DeBertForOppo, self).__init__(config)
     self.bert = DebertaModel.from_pretrained(model_path, config=config)
     self.classifier = nn.Linear(2 * config.hidden_size, config.num_labels)
     self.dropout = nn.Dropout(config.hidden_dropout_prob)