Пример #1
0
    def test_inference_no_head(self):
        model = MobileBertModel.from_pretrained(
            "google/mobilebert-uncased").to(torch_device)
        input_ids = _long_tensor(
            [[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]])
        with torch.no_grad():
            output = model(input_ids)[0]
        expected_shape = torch.Size((1, 9, 512))
        self.assertEqual(output.shape, expected_shape)
        expected_slice = torch.tensor(
            [[
                [-2.4736526e07, 8.2691656e04, 1.6521838e05],
                [-5.7541704e-01, 3.9056022e00, 4.4011507e00],
                [2.6047359e00, 1.5677652e00, -1.7324188e-01],
            ]],
            device=torch_device,
        )

        # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a
        # ~1 difference, it's therefore not a good idea to measure using addition.
        # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the
        # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE
        lower_bound = torch.all(
            (expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE)
        upper_bound = torch.all(
            (expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE)

        self.assertTrue(lower_bound and upper_bound)
    def __init__(self, num_labels=17):
        self.num_labels = num_labels
        super(MobileBertForMultiLabelSequenceClassification, self).__init__()
        self.bert = MobileBertModel.from_pretrained(
            'google/mobilebert-uncased',
            hidden_act="gelu",
            num_labels=num_labels)

        self.dropout = torch.nn.Dropout(0.1)
        self.classifier = torch.nn.Linear(512, num_labels)
 def __init__(self, config, num_labels=17, mobilebert = True):
     self.mobilebert = mobilebert
     if not mobilebert:
         super(BertForMultiLabelSequenceClassification, self).__init__(config)
     else:
         super(BertForMultiLabelSequenceClassification, self).__init__(config)
     self.num_labels = num_labels
     self.bert = BertModel(config) if not mobilebert else MobileBertModel.from_pretrained(
         'google/mobilebert-uncased',
         num_labels=num_labels,)
     
     self.dropout = torch.nn.Dropout( config.hidden_dropout_prob)
     self.classifier = torch.nn.Linear( config.hidden_size, num_labels)
     if not mobilebert:
         self.apply(self.init_bert_weights)
Пример #4
0
def Net():
    bert = MobileBertModel.from_pretrained('google/mobilebert-uncased')

    HIDDEN_DIM = 256
    OUTPUT_DIM = 1
    N_LAYERS = 2
    BIDIRECTIONAL = True
    DROPOUT = 0.25

    model = BERTGRUSentiment(bert, HIDDEN_DIM, OUTPUT_DIM, N_LAYERS,
                             BIDIRECTIONAL, DROPOUT)
    for name, param in model.named_parameters():
        if name.startswith('bert'):
            param.requires_grad = False

    return model
Пример #5
0
 def test_model_from_pretrained(self):
     for model_name in MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
         model = MobileBertModel.from_pretrained(model_name)
         self.assertIsNotNone(model)