Пример #1
0
    def test_inference_masked_lm(self):

        tokenizer = PerceiverTokenizer.from_pretrained("deepmind/language-perceiver")
        model = PerceiverForMaskedLM.from_pretrained("deepmind/language-perceiver")
        model.to(torch_device)

        # prepare inputs
        text = "This is an incomplete sentence where some words are missing."
        encoding = tokenizer(text, padding="max_length", return_tensors="pt")

        # mask " missing.".
        encoding.input_ids[0, 52:61] = tokenizer.mask_token_id
        inputs, input_mask = encoding.input_ids.to(torch_device), encoding.attention_mask.to(torch_device)

        # forward pass
        with torch.no_grad():
            outputs = model(inputs=inputs, attention_mask=input_mask)
        logits = outputs.logits

        # verify logits
        expected_shape = torch.Size((1, tokenizer.model_max_length, tokenizer.vocab_size))
        self.assertEqual(logits.shape, expected_shape)

        expected_slice = torch.tensor(
            [[-10.8609, -10.7651, -10.9187], [-12.1689, -11.9389, -12.1479], [-12.1518, -11.9707, -12.2073]],
            device=torch_device,
        )

        self.assertTrue(torch.allclose(logits[0, :3, :3], expected_slice, atol=1e-4))

        expected_greedy_predictions = [38, 115, 111, 121, 121, 111, 116, 109, 52]
        masked_tokens_predictions = logits[0, 52:61].argmax(dim=-1).tolist()
        self.assertListEqual(expected_greedy_predictions, masked_tokens_predictions)
def convert_perceiver_checkpoint(pickle_file,
                                 pytorch_dump_folder_path,
                                 architecture="MLM"):
    """
    Copy/paste/tweak model's weights to our Perceiver structure.
    """

    # load parameters as FlatMapping data structure
    with open(pickle_file, "rb") as f:
        checkpoint = pickle.loads(f.read())

    state = None
    if isinstance(checkpoint, dict) and architecture in [
            "image_classification",
            "image_classification_fourier",
            "image_classification_conv",
    ]:
        # the image classification_conv checkpoint also has batchnorm states (running_mean and running_var)
        params = checkpoint["params"]
        state = checkpoint["state"]
    else:
        params = checkpoint

    # turn into initial state dict
    state_dict = dict()
    for scope_name, parameters in hk.data_structures.to_mutable_dict(
            params).items():
        for param_name, param in parameters.items():
            state_dict[scope_name + "/" + param_name] = param

    if state is not None:
        # add state variables
        for scope_name, parameters in hk.data_structures.to_mutable_dict(
                state).items():
            for param_name, param in parameters.items():
                state_dict[scope_name + "/" + param_name] = param

    # rename keys
    rename_keys(state_dict, architecture=architecture)

    # load HuggingFace model
    config = PerceiverConfig()
    subsampling = None
    repo_id = "datasets/huggingface/label-files"
    if architecture == "MLM":
        config.qk_channels = 8 * 32
        config.v_channels = 1280
        model = PerceiverForMaskedLM(config)
    elif "image_classification" in architecture:
        config.num_latents = 512
        config.d_latents = 1024
        config.d_model = 512
        config.num_blocks = 8
        config.num_self_attends_per_block = 6
        config.num_cross_attention_heads = 1
        config.num_self_attention_heads = 8
        config.qk_channels = None
        config.v_channels = None
        # set labels
        config.num_labels = 1000
        filename = "imagenet-1k-id2label.json"
        id2label = json.load(
            open(cached_download(hf_hub_url(repo_id, filename)), "r"))
        id2label = {int(k): v for k, v in id2label.items()}
        config.id2label = id2label
        config.label2id = {v: k for k, v in id2label.items()}
        if architecture == "image_classification":
            config.image_size = 224
            model = PerceiverForImageClassificationLearned(config)
        elif architecture == "image_classification_fourier":
            config.d_model = 261
            model = PerceiverForImageClassificationFourier(config)
        elif architecture == "image_classification_conv":
            config.d_model = 322
            model = PerceiverForImageClassificationConvProcessing(config)
        else:
            raise ValueError(f"Architecture {architecture} not supported")
    elif architecture == "optical_flow":
        config.num_latents = 2048
        config.d_latents = 512
        config.d_model = 322
        config.num_blocks = 1
        config.num_self_attends_per_block = 24
        config.num_self_attention_heads = 16
        config.num_cross_attention_heads = 1
        model = PerceiverForOpticalFlow(config)
    elif architecture == "multimodal_autoencoding":
        config.num_latents = 28 * 28 * 1
        config.d_latents = 512
        config.d_model = 704
        config.num_blocks = 1
        config.num_self_attends_per_block = 8
        config.num_self_attention_heads = 8
        config.num_cross_attention_heads = 1
        config.num_labels = 700
        # define dummy inputs + subsampling (as each forward pass is only on a chunk of image + audio data)
        images = torch.randn((1, 16, 3, 224, 224))
        audio = torch.randn((1, 30720, 1))
        nchunks = 128
        image_chunk_size = np.prod((16, 224, 224)) // nchunks
        audio_chunk_size = audio.shape[1] // config.samples_per_patch // nchunks
        # process the first chunk
        chunk_idx = 0
        subsampling = {
            "image":
            torch.arange(image_chunk_size * chunk_idx,
                         image_chunk_size * (chunk_idx + 1)),
            "audio":
            torch.arange(audio_chunk_size * chunk_idx,
                         audio_chunk_size * (chunk_idx + 1)),
            "label":
            None,
        }
        model = PerceiverForMultimodalAutoencoding(config)
        # set labels
        filename = "kinetics700-id2label.json"
        id2label = json.load(
            open(cached_download(hf_hub_url(repo_id, filename)), "r"))
        id2label = {int(k): v for k, v in id2label.items()}
        config.id2label = id2label
        config.label2id = {v: k for k, v in id2label.items()}
    else:
        raise ValueError(f"Architecture {architecture} not supported")
    model.eval()

    # load weights
    model.load_state_dict(state_dict)

    # prepare dummy input
    input_mask = None
    if architecture == "MLM":
        tokenizer = PerceiverTokenizer.from_pretrained(
            "/Users/NielsRogge/Documents/Perceiver/Tokenizer files")
        text = "This is an incomplete sentence where some words are missing."
        encoding = tokenizer(text, padding="max_length", return_tensors="pt")
        # mask " missing.". Note that the model performs much better if the masked chunk starts with a space.
        encoding.input_ids[0, 51:60] = tokenizer.mask_token_id
        inputs = encoding.input_ids
        input_mask = encoding.attention_mask
    elif architecture in [
            "image_classification", "image_classification_fourier",
            "image_classification_conv"
    ]:
        feature_extractor = PerceiverFeatureExtractor()
        image = prepare_img()
        encoding = feature_extractor(image, return_tensors="pt")
        inputs = encoding.pixel_values
    elif architecture == "optical_flow":
        inputs = torch.randn(1, 2, 27, 368, 496)
    elif architecture == "multimodal_autoencoding":
        images = torch.randn((1, 16, 3, 224, 224))
        audio = torch.randn((1, 30720, 1))
        inputs = dict(image=images,
                      audio=audio,
                      label=torch.zeros((images.shape[0], 700)))

    # forward pass
    if architecture == "multimodal_autoencoding":
        outputs = model(inputs=inputs,
                        attention_mask=input_mask,
                        subsampled_output_points=subsampling)
    else:
        outputs = model(inputs=inputs, attention_mask=input_mask)
    logits = outputs.logits

    # verify logits
    if not isinstance(logits, dict):
        print("Shape of logits:", logits.shape)
    else:
        for k, v in logits.items():
            print(f"Shape of logits of modality {k}", v.shape)

    if architecture == "MLM":
        expected_slice = torch.tensor([[-11.8336, -11.6850, -11.8483],
                                       [-12.8149, -12.5863, -12.7904],
                                       [-12.8440, -12.6410, -12.8646]])
        assert torch.allclose(logits[0, :3, :3], expected_slice)
        masked_tokens_predictions = logits[0, 51:60].argmax(dim=-1).tolist()
        expected_list = [38, 115, 111, 121, 121, 111, 116, 109, 52]
        assert masked_tokens_predictions == expected_list
        print("Greedy predictions:")
        print(masked_tokens_predictions)
        print()
        print("Predicted string:")
        print(tokenizer.decode(masked_tokens_predictions))

    elif architecture in [
            "image_classification", "image_classification_fourier",
            "image_classification_conv"
    ]:
        print("Predicted class:",
              model.config.id2label[logits.argmax(-1).item()])

    # Finally, save files
    Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
    print(f"Saving model to {pytorch_dump_folder_path}")
    model.save_pretrained(pytorch_dump_folder_path)
Пример #3
0
 def perceiver_tokenizer(self):
     return PerceiverTokenizer.from_pretrained(
         "deepmind/language-perceiver")
Пример #4
0
 def setUp(self):
     super().setUp()
     tokenizer = PerceiverTokenizer()
     tokenizer.save_pretrained(self.tmpdirname)
Пример #5
0
def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser(
        (ModelArguments, DataTrainingArguments, TrainingArguments))
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
        # If we pass only one argument to the script and it's the path to a json file,
        # let's parse it to get our arguments.
        model_args, data_args, training_args = parser.parse_json_file(
            json_file=os.path.abspath(sys.argv[1]))
    else:
        model_args, data_args, training_args = parser.parse_args_into_dataclasses(
        )

    # Detecting last checkpoint.
    last_checkpoint = None
    if (os.path.isdir(training_args.output_dir) and training_args.do_train
            and not training_args.overwrite_output_dir):
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(
                training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome.")
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

    # Setup logging
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s -   %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        handlers=[logging.StreamHandler(sys.stdout)],
    )
    logger.setLevel(logging.INFO if is_main_process(training_args.local_rank
                                                    ) else logging.WARN)

    # Log on each process the small summary:
    logger.warning(
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        +
        f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
    )
    # Set the verbosity to info of the Transformers logger (on main process only):
    if is_main_process(training_args.local_rank):
        transformers.utils.logging.set_verbosity_info()
        transformers.utils.logging.enable_default_handler()
        transformers.utils.logging.enable_explicit_format()
    logger.info("Training/evaluation parameters %s", training_args)

    # Set seed before initializing model.
    set_seed(training_args.seed)

    # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
    # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
    # (the dataset will be downloaded automatically from the datasets Hub).
    #
    # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
    # 'text' is found. You can easily tweak this behavior (see below).
    #
    # In distributed training, the load_dataset function guarantee that only one local process can concurrently
    # download the dataset.
    if data_args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        datasets = load_dataset(data_args.dataset_name,
                                data_args.dataset_config_name)
    else:
        data_files = {}
        if data_args.train_file is not None:
            data_files["train"] = data_args.train_file
        if data_args.validation_file is not None:
            data_files["validation"] = data_args.validation_file
        if data_args.test_file is not None:
            data_files["test"] = data_args.test_file
        extension = data_args.train_file.split(".")[-1]
        datasets = load_dataset(extension, data_files=data_files)
    # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
    # https://huggingface.co/docs/datasets/loading_datasets.html.

    if training_args.do_train:
        column_names = datasets["train"].column_names
        features = datasets["train"].features
    else:
        column_names = datasets["validation"].column_names
        features = datasets["validation"].features
    text_column_name = "tokens" if "tokens" in column_names else column_names[0]
    label_column_name = (f"{data_args.task_name}_tags"
                         if f"{data_args.task_name}_tags" in column_names else
                         column_names[1])

    # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the
    # unique labels.
    def get_label_list(labels):
        unique_labels = set()
        for label in labels:
            unique_labels = unique_labels | set(label)
        label_list = list(unique_labels)
        label_list.sort()
        return label_list

    if isinstance(features[label_column_name].feature, ClassLabel):
        label_list = features[label_column_name].feature.names
        # No need to convert the labels since they are already ints.
        label_to_id = {i: i for i in range(len(label_list))}
    else:
        label_list = get_label_list(datasets["train"][label_column_name])
        label_to_id = {l: i for i, l in enumerate(label_list)}
    num_labels = len(label_list)

    config = PerceiverConfig(
        num_labels=num_labels,
        finetuning_task=data_args.task_name,
        cache_dir=model_args.cache_dir,
        d_latents=model_args.d_latents,
        d_model=model_args.d_model,
        max_position_embeddings=model_args.max_position_embeddings,
    )

    tokenizer = PerceiverTokenizer(
        cache_dir=model_args.cache_dir,
        model_max_length=model_args.model_max_length)

    model = PerceiverForTokenClassification(config=config)
    model.main_input_name = "input_ids"

    # Preprocessing the dataset
    # Padding strategy
    padding = "max_length" if data_args.pad_to_max_length else False

    # Tokenize all texts and align the labels with them.
    def tokenize_and_align_labels(examples):
        tokenized_inputs = tokenizer(
            examples[text_column_name],
            padding=padding,
            truncation=True,
            # We use this argument because the texts in our dataset are lists of words (with a label for each word).
            is_split_into_words=True,
            # return_offsets_mapping=True,
        )
        labels = []
        """
        There is no PerceiverTokenizerFast, follow code works for conll2003 datasets.
        words: ['EU', 'rejects', 'German', 'call', 'to', 'boycott', 'British', 'lamb', '.']
        words_labels: [3, 0, 7, 0, 0, 0, 7, 0, 0] 
        tokens_labels: [-100, 3, 3, 0, 0, 0, 0, 0, 0, 0, 7, 7, 7, 7, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 7, 7, 7, 7, 7, 7, 0, 0, 0, 0, 0, -100]
        """
        for i in range(len(tokenized_inputs["input_ids"])):
            # -2 special token [BOS]  [SEP]
            id_length = len(tokenized_inputs["input_ids"][i]) - 2
            char_length = len("".join(examples[text_column_name][i]))
            assert id_length == char_length

            label_ids = [-100]

            words = examples[text_column_name][i]
            words_labels = examples[label_column_name][i]
            for w, w_label in zip(words, words_labels):
                current_label = label_to_id[w_label]
                label_ids.extend([current_label] * len(w))

            label_ids.append(-100)
            assert len(label_ids) == id_length + 2

            labels.append(label_ids)

        tokenized_inputs["labels"] = labels
        return tokenized_inputs

    if training_args.do_train:
        if "train" not in datasets:
            raise ValueError("--do_train requires a train dataset")
        train_dataset = datasets["train"]
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(
                range(data_args.max_train_samples))
        train_dataset = train_dataset.map(
            tokenize_and_align_labels,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    if training_args.do_eval:
        if "validation" not in datasets:
            raise ValueError("--do_eval requires a validation dataset")
        eval_dataset = datasets["validation"]
        if data_args.max_val_samples is not None:
            eval_dataset = eval_dataset.select(range(
                data_args.max_val_samples))
        eval_dataset = eval_dataset.map(
            tokenize_and_align_labels,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    if training_args.do_predict:
        if "test" not in datasets:
            raise ValueError("--do_predict requires a test dataset")
        test_dataset = datasets["test"]
        if data_args.max_test_samples is not None:
            test_dataset = test_dataset.select(
                range(data_args.max_test_samples))
        test_dataset = test_dataset.map(
            tokenize_and_align_labels,
            batched=True,
            num_proc=data_args.preprocessing_num_workers,
            load_from_cache_file=not data_args.overwrite_cache,
        )

    # Data collator
    data_collator = DataCollatorForTokenClassification(
        tokenizer, pad_to_multiple_of=8 if training_args.fp16 else None)

    # Metrics
    metric = load_metric("seqeval")

    def compute_metrics(p):
        predictions, labels = p
        predictions = np.argmax(predictions, axis=2)

        # Remove ignored index (special tokens)
        true_predictions = [[
            label_list[p] for (p, l) in zip(prediction, label) if l != -100
        ] for prediction, label in zip(predictions, labels)]
        true_labels = [[
            label_list[l] for (p, l) in zip(prediction, label) if l != -100
        ] for prediction, label in zip(predictions, labels)]

        results = metric.compute(predictions=true_predictions,
                                 references=true_labels)
        if data_args.return_entity_level_metrics:
            # Unpack nested dictionaries
            final_results = {}
            for key, value in results.items():
                if isinstance(value, dict):
                    for n, v in value.items():
                        final_results[f"{key}_{n}"] = v
                else:
                    final_results[key] = value
            return final_results
        else:
            return {
                "precision": results["overall_precision"],
                "recall": results["overall_recall"],
                "f1": results["overall_f1"],
                "accuracy": results["overall_accuracy"],
            }

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset if training_args.do_train else None,
        eval_dataset=eval_dataset if training_args.do_eval else None,
        tokenizer=tokenizer,
        data_collator=data_collator,
        compute_metrics=compute_metrics,
    )

    # Training
    if training_args.do_train:
        if last_checkpoint is not None:
            checkpoint = last_checkpoint
        elif os.path.isdir(model_args.model_name_or_path):
            checkpoint = model_args.model_name_or_path
        else:
            checkpoint = None
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
        metrics = train_result.metrics
        trainer.save_model()  # Saves the tokenizer too for easy upload

        max_train_samples = (data_args.max_train_samples
                             if data_args.max_train_samples is not None else
                             len(train_dataset))
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))

        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()

    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")

        metrics = trainer.evaluate()

        max_val_samples = (data_args.max_val_samples
                           if data_args.max_val_samples is not None else
                           len(eval_dataset))
        metrics["eval_samples"] = min(max_val_samples, len(eval_dataset))

        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)

    # Predict
    if training_args.do_predict:
        logger.info("*** Predict ***")

        predictions, labels, metrics = trainer.predict(test_dataset)
        predictions = np.argmax(predictions, axis=2)

        # Remove ignored index (special tokens)
        true_predictions = [[
            label_list[p] for (p, l) in zip(prediction, label) if l != -100
        ] for prediction, label in zip(predictions, labels)]

        trainer.log_metrics("test", metrics)
        trainer.save_metrics("test", metrics)

        # Save predictions
        output_test_predictions_file = os.path.join(training_args.output_dir,
                                                    "test_predictions.txt")
        if trainer.is_world_process_zero():
            with open(output_test_predictions_file, "w") as writer:
                for prediction in true_predictions:
                    writer.write(" ".join(prediction) + "\n")