def create_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels): model = TransfoXLModel(config) model.eval() hidden_states_1, mems_1 = model(input_ids_1) hidden_states_2, mems_2 = model(input_ids_2, mems_1) outputs = { "hidden_states_1": hidden_states_1, "mems_1": mems_1, "hidden_states_2": hidden_states_2, "mems_2": mems_2, } return outputs
def create_transfo_xl_model(self, config, input_ids_1, input_ids_2, lm_labels): model = TransfoXLModel(config) model.to(torch_device) model.eval() outputs1 = model(input_ids_1) outputs2 = model(input_ids_2, outputs1["mems"]) outputs = { "hidden_states_1": outputs1["last_hidden_state"], "mems_1": outputs1["mems"], "hidden_states_2": outputs2["last_hidden_state"], "mems_2": outputs2["mems"], } return outputs