def create_and_check_model(self, config, pixel_values, labels): model = ViTMAEModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_model(self, config, pixel_values, labels): model = ViTMAEModel(config=config) model.to(torch_device) model.eval() result = model(pixel_values) # expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) image_size = to_2tuple(self.image_size) patch_size = to_2tuple(self.patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) expected_seq_len = int(math.ceil((1 - config.mask_ratio) * (num_patches + 1))) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, self.hidden_size))