def __init__(self, data_augmentation, hflip_prob=0.5, mean=(123.0, 117.0, 104.0)): if data_augmentation == "hflip": self.transforms = T.Compose( [ T.RandomHorizontalFlip(p=hflip_prob), T.PILToTensor(), T.ConvertImageDtype(torch.float), ] ) elif data_augmentation == "ssd": self.transforms = T.Compose( [ T.RandomPhotometricDistort(), T.RandomZoomOut(fill=list(mean)), T.RandomIoUCrop(), T.RandomHorizontalFlip(p=hflip_prob), T.PILToTensor(), T.ConvertImageDtype(torch.float), ] ) elif data_augmentation == "ssdlite": self.transforms = T.Compose( [ T.RandomIoUCrop(), T.RandomHorizontalFlip(p=hflip_prob), T.PILToTensor(), T.ConvertImageDtype(torch.float), ] ) else: raise ValueError(f'Unknown data augmentation policy "{data_augmentation}"')
def __init__(self, *, data_augmentation, hflip_prob=0.5, mean=(123.0, 117.0, 104.0)): if data_augmentation == "hflip": self.transforms = T.Compose([ T.RandomHorizontalFlip(p=hflip_prob), T.PILToTensor(), T.ConvertImageDtype(torch.float), ]) elif data_augmentation == "lsj": self.transforms = T.Compose([ T.ScaleJitter(target_size=(1024, 1024)), T.FixedSizeCrop(size=(1024, 1024), fill=mean), T.RandomHorizontalFlip(p=hflip_prob), T.PILToTensor(), T.ConvertImageDtype(torch.float), ]) elif data_augmentation == "multiscale": self.transforms = T.Compose([ T.RandomShortestSize(min_size=(480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800), max_size=1333), T.RandomHorizontalFlip(p=hflip_prob), T.PILToTensor(), T.ConvertImageDtype(torch.float), ]) elif data_augmentation == "ssd": self.transforms = T.Compose([ T.RandomPhotometricDistort(), T.RandomZoomOut(fill=list(mean)), T.RandomIoUCrop(), T.RandomHorizontalFlip(p=hflip_prob), T.PILToTensor(), T.ConvertImageDtype(torch.float), ]) elif data_augmentation == "ssdlite": self.transforms = T.Compose([ T.RandomIoUCrop(), T.RandomHorizontalFlip(p=hflip_prob), T.PILToTensor(), T.ConvertImageDtype(torch.float), ]) else: raise ValueError( f'Unknown data augmentation policy "{data_augmentation}"')
def __init__(self): super().__init__() self.transforms = T.Compose([ T.PILToTensor(), T.ConvertImageDtype(torch.float32), T.Normalize(mean=0.5, std=0.5), # map [0, 1] into [-1, 1] T.ValidateModelInput(), ])
def __init__(self, base_size, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)): self.transforms = T.Compose([ T.RandomResize(base_size, base_size), T.PILToTensor(), T.ConvertImageDtype(torch.float), T.Normalize(mean=mean, std=std), ])
def __init__( self, *, # RandomResizeAndCrop params crop_size, min_scale=-0.2, max_scale=0.5, stretch_prob=0.8, # AsymmetricColorJitter params brightness=0.4, contrast=0.4, saturation=0.4, hue=0.5 / 3.14, # Random[H,V]Flip params asymmetric_jitter_prob=0.2, do_flip=True, ): super().__init__() transforms = [ T.PILToTensor(), T.AsymmetricColorJitter(brightness=brightness, contrast=contrast, saturation=saturation, hue=hue, p=asymmetric_jitter_prob), T.RandomResizeAndCrop(crop_size=crop_size, min_scale=min_scale, max_scale=max_scale, stretch_prob=stretch_prob), ] if do_flip: transforms += [ T.RandomHorizontalFlip(p=0.5), T.RandomVerticalFlip(p=0.1) ] transforms += [ T.ConvertImageDtype(torch.float32), T.Normalize(mean=0.5, std=0.5), # map [0, 1] into [-1, 1] T.RandomErasing(max_erase=2), T.MakeValidFlowMask(), T.ValidateModelInput(), ] self.transforms = T.Compose(transforms)
def __init__(self, base_size, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), contrast=1, brightness=1, sigma=1): self.contrast_initial = contrast self.contrast_final = contrast if (contrast == 1): self.contrast_final = contrast else: self.contrast_final = self.contrast_initial - 1 self.brightness_initial = brightness self.brightness_final = brightness if (brightness == 1): self.brightness_final = brightness else: self.brightness_final = self.brightness_initial - 1 self.sigma_initial = sigma self.sigma_final = sigma if (sigma == 1): self.sigma_final = sigma else: self.sigma_final = self.sigma_initial - 1 print("Contrast: ({}, {})".format(self.contrast_final, self.contrast_initial)) print("Brightness: ({}, {})".format(self.brightness_final, self.brightness_initial)) print("Sigma: ({}, {})".format(self.sigma_final, self.sigma_initial)) self.transforms = T.Compose([ T.RandomResize(base_size, base_size), T.PILToTensor(), T.ConvertImageDtype(torch.float), T.ColorJitter(contrast=(self.contrast_final, self.contrast_initial), brightness=(self.brightness_final, self.brightness_initial)), #T.GaussianBlur(kernel_size=19, sigma=(self.sigma_final, self.sigma_initial)), T.Normalize(mean=mean, std=std), ])
def __init__(self, base_size, crop_size, hflip_prob=0.5, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)): min_size = int(0.5 * base_size) max_size = int(2.0 * base_size) trans = [T.RandomResize(min_size, max_size)] if hflip_prob > 0: trans.append(T.RandomHorizontalFlip(hflip_prob)) trans.extend([ T.RandomCrop(crop_size), T.PILToTensor(), T.ConvertImageDtype(torch.float), T.Normalize(mean=mean, std=std), ]) self.transforms = T.Compose(trans)
def __init__(self): self.transforms = T.Compose([ T.PILToTensor(), T.ConvertImageDtype(torch.float), ])