def _fit(self, trava_model: TravaModel, X, y, fit_params: dict, predict_params: dict): if not self._is_raw_model_ready: trava_model.fit(X=X, y=y, fit_params=fit_params, predict_params=predict_params) for group_model in self._group_models: if group_model != trava_model: trava_model.copy(existing_model=group_model, only_fit=True) self._is_raw_model_ready = True
def test_copy(mocker, model_id, use_existing_model, only_fit): raw_model = mocker.Mock() model = TravaModel(raw_model=raw_model, model_id=model_id) y_train = np.array([0, 0, 1]) y_train_pred = np.array([1, 2, 3]) y_train_pred_proba = np.array([3, 4, 5]) y_test = np.array([-2, 3, 5]) y_test_pred = np.array([6, 7, 8]) y_test_pred_proba = np.array([9, 10, 11]) fit_params = {"1": 2} predict_params = {"2": 3} fit_time = 123 predict_time = 434 model._y_train = y_train model._y_train_pred = y_train_pred model._y_train_pred_proba = y_train_pred_proba model._y_test = y_test model._y_test_pred = y_test_pred model._y_test_pred_proba = y_test_pred_proba model._fit_params = fit_params model._predict_params = predict_params model._fit_time = fit_time model._predict_time = predict_time model_copy_id = model_id + "_copy" existing_model = None existing_model_id = "existing_model" # what a mess... but should work if use_existing_model: existing_model = TravaModel(raw_model=raw_model, model_id=existing_model_id) model_copy = model.copy(existing_model=existing_model, only_fit=only_fit) else: model_copy = model.copy(model_id=model_copy_id, only_fit=only_fit) if use_existing_model: assert model_copy.model_id == existing_model_id else: assert model_copy.model_id == model_copy_id y = model.y(for_train=True) copy_y = model_copy.y(for_train=True) assert np.array_equal(y, copy_y) assert model.fit_params == model_copy.fit_params assert model.fit_time == model_copy.fit_time if use_existing_model: assert existing_model == model_copy else: assert existing_model != model_copy if only_fit: assert model_copy.y(for_train=False) is None assert model_copy.y_pred(for_train=False) is None assert model_copy.y_pred_proba(for_train=False) is None assert model_copy.predict_time is None assert model_copy.predict_params == {} else: assert np.array_equal(model.y(for_train=False), model_copy.y(for_train=False)) assert np.array_equal(model.y_pred(for_train=False), model_copy.y_pred(for_train=False)) assert np.array_equal(model.y_pred_proba(for_train=False), model_copy.y_pred_proba(for_train=False)) assert model.predict_time == model_copy.predict_time assert model.predict_params == model_copy.predict_params