Пример #1
0
    def strong_components(self):
        """
        Generates sets containing the sets of nodes in each strongly
        connected component (U{http://mathworld.wolfram.com/StronglyConnectedComponent.html}).

        @rtype:  C{generator}
        @return: a generator of sets of nodes for each strongly connected component
        """
        import traversals
        visited = set()
        order = list(traversals.dfs(self, post=True))
        top_order = reversed(order)
        for node in top_order:
            if not node in visited:
                component = set()
                for node in traversals.dfs(self, node, pre=True, adj=self.parents):
                    if not node in visited:
                        component.add(node)
                        visited.add(node)
                yield component
Пример #2
0
 def flatten(self):
     # flatten the structure (in place) so that
     # all nodes are either leaf or parents of leaf nodes
     for node in dfs(self, post=True):
         grand_children = set()
         for child in list(self.children[node]):
             if self.outdegree(child):
                 self.del_edge((node, child))
                 grand_children |= self.children[child]
         for gc in grand_children:
             self.add_edge((node, gc))
Пример #3
0
 def flatten(self):
     # flatten the structure (in place) so that
     # all nodes are either leaf or parents of leaf nodes
     for node in dfs(self, post=True):
         grand_children = set()
         for child in list(self.children[node]):
             if self.outdegree(child):
                 self.del_edge((node, child))
                 grand_children |= self.children[child]
         for gc in grand_children:
             self.add_edge((node, gc))
Пример #4
0
 def structure_is_valid(self):
     # the induced graph containing the nodes reachable from
     # each root should be a tree
     for root in self.root_nodes:
         visited = set()
         num_edges = 0
         num_nodes = 0
         for node in dfs(self, root, post=True):
             num_nodes += 1
             num_edges += self.outdegree(node)
         if not num_nodes == num_edges + 1:
             return False
     return True
Пример #5
0
 def structure_is_valid(self):
     # the induced graph containing the nodes reachable from
     # each root should be a tree
     for root in self.root_nodes:
         visited = set()
         num_edges = 0
         num_nodes = 0
         for node in dfs(self, root, post=True):
             num_nodes += 1
             num_edges += self.outdegree(node)
         if not num_nodes == num_edges + 1:
             return False
     return True
Пример #6
0
 def deepen(self):
     # deepen structure (in place) to provide
     # nicer layout for humans
     for node in list(dfs(self, post=True)):
         children = list(self.children[node])
         if children:
             it = iter(children)
             new_parents = set(self.parents[next(it)])
             new_parents.remove(node)
             for child in it:
                 if not new_parents:
                     break
                 new_parents &= self.parents[child]
             for p in new_parents:
                 for child in children:
                     self.del_edge((p, child))
                 self.add_edge((p, node))
Пример #7
0
 def deepen(self):
     # deepen structure (in place) to provide
     # nicer layout for humans
     for node in list(dfs(self, post=True)):
         children = list(self.children[node])
         if children:
             it = iter(children)
             new_parents = set(self.parents[next(it)])
             new_parents.remove(node)
             for child in it:
                 if not new_parents:
                     break
                 new_parents &= self.parents[child]
             for p in new_parents:
                 for child in children:
                     self.del_edge((p, child))
                 self.add_edge((p, node))
Пример #8
0
 def reachable(self, node):
     # return a generator of the leaf
     # nodes reachable from node
     for n in dfs(self, node, post=True):
         if not self.children[n]:
             yield n
Пример #9
0
 def reachable(self, node):
     # return a generator of the leaf
     # nodes reachable from node
     for n in dfs(self, node, post=True):
         if not self.children[n]:
             yield n
Пример #10
0
from content import distances, city_adjacency
from traversals import dfs, bfs, iter_deep_dfs, bidir_search, \
    greedily_best_first_search, min_sum_estimation, informational_search
from decision_tree import visualize, make_dot_file

start = "Харьков"
end = "Ниж.Новгород"

print('__Неинформированный поиск__')

# DFS
dfs_dist, dfs_way = dfs(city_adjacency, start, end)
print(f'DFS:\t\t\t\t\t\t{dfs_dist, dfs_way}')
# BFS
bfs_dist, bfs_way = bfs(city_adjacency, start, end)
print(f'BFS:\t\t\t\t\t\t{bfs_dist, bfs_way}')
# с ограничением глубины:
max_depth = 7
md_dfs_dist, md_dfs_way = dfs(city_adjacency, start, end, max_depth=max_depth)
print(f'DFS with max_depth of {max_depth}:\t{md_dfs_dist, md_dfs_way}')
# с итеративным углублением
id_dfs_dist, id_dfs_way = iter_deep_dfs(city_adjacency, start, end)
print(f'Iteration deepening:\t\t{id_dfs_dist, id_dfs_way}')
# с двунаправленным поиском
bds_dist, bds_way = bidir_search(city_adjacency, start, end)
print(f'Bidirectional search:\t\t{bds_dist, bds_way}')

print('__Информативный поиск__')
# жадный поиск по первому наилучшему соответствию
gbfs_dist, gbfs_way = informational_search(greedily_best_first_search,
                                           city_adjacency, distances, start,