def test_train_save_restore_sharded(self): """Saves and restores a sharded checkpoint to check for equivalence.""" if fastmath.local_device_count() < 2: return # multi-accelerator only base.N_WEIGHTS_SHARDS = fastmath.local_device_count() train_data = data.Serial(lambda _: _very_simple_data(2, 2), data.CountAndSkip('simple_data')) task = training.TrainTask(train_data(), tl.L2Loss(), optimizers.Adam(.0001)) eval_task = training.EvalTask( _very_simple_data(2, 2), # deliberately re-using training data [tl.L2Loss()], metric_names=['SGD.L2Loss']) tmp_dir = self.create_tempdir().full_path def _make_model_and_session(): m = tl.Serial(tl.Dense(2)) ts = training.Loop(m, [task], eval_tasks=[eval_task], eval_at=lambda step_n: step_n % 2 == 0, output_dir=tmp_dir) return m, ts _, training_session = _make_model_and_session() self.assertEqual(0, training_session.step) training_session.run(n_steps=1) training_session.save_checkpoint('model') _, training_session2 = _make_model_and_session() training_session2.run(n_steps=1) base.N_WEIGHTS_SHARDS = 1
def test_count_and_skip(self): dataset = lambda _: ((i, i + 1) for i in range(10)) examples = data.Serial(dataset, data.CountAndSkip('toy_data')) ex_generator = examples() ex1 = next(ex_generator) self.assertEqual(ex1, (0, 1)) self.assertEqual(data.inputs.data_counters['toy_data'], 1) ex2 = next(ex_generator) self.assertEqual(ex2, (1, 2)) self.assertEqual(data.inputs.data_counters['toy_data'], 2) ex3 = next(examples()) # new generator, will skip self.assertEqual(ex3, (2, 3)) self.assertEqual(data.inputs.data_counters['toy_data'], 3) data.inputs.data_counters['toy_data'] = 0 # reset ex4 = next(examples()) # new generator, was reset self.assertEqual(ex4, (0, 1)) self.assertEqual(data.inputs.data_counters['toy_data'], 1)
def test_train_save_restore_dense(self): """Saves and restores a checkpoint to check for equivalence.""" train_data = data.Serial(lambda _: _very_simple_data(), data.CountAndSkip('simple_data')) task = training.TrainTask(train_data(), tl.L2Loss(), optimizers.Adam(.0001)) eval_task = training.EvalTask( _very_simple_data(), # deliberately re-using training data [tl.L2Loss()], metric_names=['SGD.L2Loss']) tmp_dir = self.create_tempdir().full_path def _make_model_and_session(): m = tl.Serial(tl.Dense(1)) ts = training.Loop(m, [task], eval_tasks=[eval_task], eval_at=lambda step_n: step_n % 2 == 0, output_dir=tmp_dir) return m, ts model, training_session = _make_model_and_session() self.assertEqual(0, training_session.step) training_session.run(n_steps=1) training_session.save_checkpoint() self.assertEqual(data.inputs.data_counters['simple_data'], 2) data.inputs.data_counters['simple_data'] = 0 # reset manually self.assertEqual(data.inputs.data_counters['simple_data'], 0) # check model2, training_session2 = _make_model_and_session() self.assertEqual(data.inputs.data_counters['simple_data'], 2) # restored x = np.ones((8, 1)) y1 = model(x, rng=fastmath.random.get_prng(0)) y2 = model2(x, rng=fastmath.random.get_prng(0)) self.assertEqual(str(y1), str(y2)) training_session2.run(n_steps=1) y1 = model(x, rng=fastmath.random.get_prng(0)) y2 = model2(x, rng=fastmath.random.get_prng(0)) self.assertNotEqual(str(y1), str(y2)) slots1 = training_session._trainer_per_task[0].slots slots2 = training_session2._trainer_per_task[0].slots np.testing.assert_array_equal(slots1, slots2)