Пример #1
0
def test_fits():
    try:
        import fitsio
    except ImportError:
        print('Skipping FITS tests, since fitsio is not installed')
        return

    get_from_wiki('Aardvark.fit')
    file_name = os.path.join('data','Aardvark.fit')
    config = treecorr.read_config('Aardvark.yaml')
    config['verbose'] = 1

    # Just test a few random particular values
    cat1 = treecorr.Catalog(file_name, config)
    np.testing.assert_equal(len(cat1.ra), 390935)
    np.testing.assert_equal(cat1.nobj, 390935)
    np.testing.assert_almost_equal(cat1.ra[0], 56.4195 * (pi/180.))
    np.testing.assert_almost_equal(cat1.ra[390934], 78.4782 * (pi/180.))
    np.testing.assert_almost_equal(cat1.dec[290333], 83.1579 * (pi/180.))
    np.testing.assert_almost_equal(cat1.g1[46392], 0.0005066675)
    np.testing.assert_almost_equal(cat1.g2[46392], -0.0001006742)
    np.testing.assert_almost_equal(cat1.k[46392], -0.0008628797)

    # The catalog doesn't have x, y, or w, but test that functionality as well.
    del config['ra_col']
    del config['dec_col']
    config['x_col'] = 'RA'
    config['y_col'] = 'DEC'
    config['w_col'] = 'MU'
    config['flag_col'] = 'INDEX'
    config['ignore_flag'] = 64
    cat2 = treecorr.Catalog(file_name, config)
    np.testing.assert_almost_equal(cat2.x[390934], 78.4782, decimal=4)
    np.testing.assert_almost_equal(cat2.y[290333], 83.1579, decimal=4)
    np.testing.assert_almost_equal(cat2.w[46392], 0.)        # index = 1200379
    np.testing.assert_almost_equal(cat2.w[46393], 0.9995946) # index = 1200386

    # Test using a limited set of rows
    config['first_row'] = 101
    config['last_row'] = 50000
    cat3 = treecorr.Catalog(file_name, config)
    np.testing.assert_equal(len(cat3.x), 49900)
    np.testing.assert_equal(cat3.ntot, 49900)
    np.testing.assert_equal(cat3.nobj, sum(cat3.w != 0))
    np.testing.assert_equal(cat3.sumw, sum(cat3.w))
    np.testing.assert_equal(cat3.sumw, sum(cat2.w[100:50000]))
    np.testing.assert_almost_equal(cat3.g1[46292], 0.0005066675)
    np.testing.assert_almost_equal(cat3.g2[46292], -0.0001006742)
    np.testing.assert_almost_equal(cat3.k[46292], -0.0008628797)

    cat4 = treecorr.read_catalogs(config, key='file_name', is_rand=True)[0]
    np.testing.assert_equal(len(cat4.x), 49900)
    np.testing.assert_equal(cat4.ntot, 49900)
    np.testing.assert_equal(cat4.nobj, sum(cat4.w != 0))
    np.testing.assert_equal(cat4.sumw, sum(cat4.w))
    np.testing.assert_equal(cat4.sumw, sum(cat2.w[100:50000]))
    assert cat4.g1 is None
    assert cat4.g2 is None
    assert cat4.k is None
Пример #2
0
def test_list():
    # Test different ways to read in a list of catalog names.
    # This is based on the bug report for Issue #10.

    nobj = 5000
    rng = np.random.RandomState(8675309)

    x_list = []
    y_list = []
    file_names = []
    ncats = 3

    for k in range(ncats):
        x = rng.random_sample(nobj)
        y = rng.random_sample(nobj)
        file_name = os.path.join('data','test_list%d.dat'%k)

        with open(file_name, 'w') as fid:
            # These are intentionally in a different order from the order we parse them.
            fid.write('# ra,dec,x,y,k,g1,g2,w,flag\n')
            for i in range(nobj):
                fid.write(('%.8f %.8f\n')%(x[i],y[i]))
        x_list.append(x)
        y_list.append(y)
        file_names.append(file_name)

    # Start with file_name being a list:
    config = {
        'x_col' : 1,
        'y_col' : 2,
        'file_name' : file_names
    }

    cats = treecorr.read_catalogs(config, key='file_name')
    np.testing.assert_equal(len(cats), ncats)
    for k in range(ncats):
        np.testing.assert_almost_equal(cats[k].x, x_list[k])
        np.testing.assert_almost_equal(cats[k].y, y_list[k])

    # Next check that the list can be just a string with spaces between names:
    config['file_name'] = " ".join(file_names)

    # Also check that it is ok to include file_list to read_catalogs.
    cats = treecorr.read_catalogs(config, 'file_name', 'file_list')
    np.testing.assert_equal(len(cats), ncats)
    for k in range(ncats):
        np.testing.assert_almost_equal(cats[k].x, x_list[k])
        np.testing.assert_almost_equal(cats[k].y, y_list[k])

    # Next check that having the names in a file_list file works:
    list_name = os.path.join('data','test_list.txt')
    with open(list_name, 'w') as fid:
        for name in file_names:
            fid.write(name + '\n')
    del config['file_name']
    config['file_list'] = list_name

    cats = treecorr.read_catalogs(config, 'file_name', 'file_list')
    np.testing.assert_equal(len(cats), ncats)
    for k in range(ncats):
        np.testing.assert_almost_equal(cats[k].x, x_list[k])
        np.testing.assert_almost_equal(cats[k].y, y_list[k])

    # Also, should be allowed to omit file_name arg:
    cats = treecorr.read_catalogs(config, list_key='file_list')
    np.testing.assert_equal(len(cats), ncats)
    for k in range(ncats):
        np.testing.assert_almost_equal(cats[k].x, x_list[k])
        np.testing.assert_almost_equal(cats[k].y, y_list[k])
Пример #3
0
def test_fits():
    try:
        import fitsio
    except ImportError:
        print('Skipping FITS tests, since fitsio is not installed')
        return

    get_from_wiki('Aardvark.fit')
    file_name = os.path.join('data','Aardvark.fit')
    config = treecorr.read_config('Aardvark.yaml')
    config['verbose'] = 1
    config['kk_file_name'] = 'kk.fits'
    config['gg_file_name'] = 'gg.fits'

    # Just test a few random particular values
    cat1 = treecorr.Catalog(file_name, config)
    np.testing.assert_equal(len(cat1.ra), 390935)
    np.testing.assert_equal(cat1.nobj, 390935)
    np.testing.assert_almost_equal(cat1.ra[0], 56.4195 * (pi/180.))
    np.testing.assert_almost_equal(cat1.ra[390934], 78.4782 * (pi/180.))
    np.testing.assert_almost_equal(cat1.dec[290333], 83.1579 * (pi/180.))
    np.testing.assert_almost_equal(cat1.g1[46392], 0.0005066675)
    np.testing.assert_almost_equal(cat1.g2[46392], -0.0001006742)
    np.testing.assert_almost_equal(cat1.k[46392], -0.0008628797)

    assert_raises(ValueError, treecorr.Catalog, file_name, config, ra_col='invalid')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, dec_col='invalid')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, r_col='invalid')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, w_col='invalid')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, wpos_col='invalid')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, flag_col='invalid')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, g1_col='invalid')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, g2_col='invalid')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, k_col='invalid')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, ra_col='0')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, dec_col='0')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, x_col='x')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, y_col='y')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, z_col='z')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, ra_col='0', dec_col='0')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, g1_col='0')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, g2_col='0')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, k_col='0')
    assert_raises(TypeError, treecorr.Catalog, file_name, config, x_units='arcmin')
    assert_raises(TypeError, treecorr.Catalog, file_name, config, y_units='arcmin')
    del config['ra_units']
    assert_raises(TypeError, treecorr.Catalog, file_name, config)
    del config['dec_units']
    assert_raises(TypeError, treecorr.Catalog, file_name, config, ra_units='deg')

    # The catalog doesn't have x, y, or w, but test that functionality as well.
    del config['ra_col']
    del config['dec_col']
    config['x_col'] = 'RA'
    config['y_col'] = 'DEC'
    config['w_col'] = 'MU'
    config['flag_col'] = 'INDEX'
    config['ignore_flag'] = 64
    cat2 = treecorr.Catalog(file_name, config)
    np.testing.assert_almost_equal(cat2.x[390934], 78.4782, decimal=4)
    np.testing.assert_almost_equal(cat2.y[290333], 83.1579, decimal=4)
    np.testing.assert_almost_equal(cat2.w[46392], 0.)        # index = 1200379
    np.testing.assert_almost_equal(cat2.w[46393], 0.9995946) # index = 1200386

    assert_raises(ValueError, treecorr.Catalog, file_name, config, x_col='invalid')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, y_col='invalid')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, z_col='invalid')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, ra_col='invalid')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, dec_col='invalid')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, r_col='invalid')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, w_col='invalid')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, wpos_col='invalid')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, flag_col='invalid')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, g1_col='invalid')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, g2_col='invalid')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, k_col='invalid')

    # Test using a limited set of rows
    config['first_row'] = 101
    config['last_row'] = 50000
    cat3 = treecorr.Catalog(file_name, config)
    np.testing.assert_equal(len(cat3.x), 49900)
    np.testing.assert_equal(cat3.ntot, 49900)
    np.testing.assert_equal(cat3.nobj, sum(cat3.w != 0))
    np.testing.assert_equal(cat3.sumw, sum(cat3.w))
    np.testing.assert_equal(cat3.sumw, sum(cat2.w[100:50000]))
    np.testing.assert_almost_equal(cat3.g1[46292], 0.0005066675)
    np.testing.assert_almost_equal(cat3.g2[46292], -0.0001006742)
    np.testing.assert_almost_equal(cat3.k[46292], -0.0008628797)

    cat4 = treecorr.read_catalogs(config, key='file_name', is_rand=True)[0]
    np.testing.assert_equal(len(cat4.x), 49900)
    np.testing.assert_equal(cat4.ntot, 49900)
    np.testing.assert_equal(cat4.nobj, sum(cat4.w != 0))
    np.testing.assert_equal(cat4.sumw, sum(cat4.w))
    np.testing.assert_equal(cat4.sumw, sum(cat2.w[100:50000]))
    assert cat4.g1 is None
    assert cat4.g2 is None
    assert cat4.k is None

    do_pickle(cat1)
    do_pickle(cat2)
    do_pickle(cat3)
    do_pickle(cat4)

    assert_raises(ValueError, treecorr.Catalog, file_name, config, first_row=-10)
    assert_raises(ValueError, treecorr.Catalog, file_name, config, first_row=0)
    assert_raises(ValueError, treecorr.Catalog, file_name, config, first_row=60000)
    assert_raises(ValueError, treecorr.Catalog, file_name, config, first_row=50001)

    assert_raises(TypeError, treecorr.read_catalogs, config)
    assert_raises(TypeError, treecorr.read_catalogs, config, key='file_name', list_key='file_name')

    # If gg output not given, it is still invalid to only have one or the other of g1,g2.
    del config['gg_file_name']
    assert_raises(ValueError, treecorr.Catalog, file_name, config, g1_col='0')
    assert_raises(ValueError, treecorr.Catalog, file_name, config, g2_col='0')
Пример #4
0
def corr3(config, logger=None):
    """Run the full three-point correlation function code based on the parameters in the
    given config dict.

    The function print_corr3_params() will output information about the valid parameters
    that are expected to be in the config dict.

    Optionally a logger parameter maybe given, in which case it is used for logging.
    If not given, the logging will be based on the verbose and log_file parameters.

    :param config:  The configuration dict which defines what to do.
    :param logger:  If desired, a logger object for logging. (default: None, in which case
                    one will be built according to the config dict's verbose level.)
    """
    # Setup logger based on config verbose value
    if logger is None:
        logger = treecorr.config.setup_logger(
                treecorr.config.get(config,'verbose',int,1),
                config.get('log_file',None))

    # Check that config doesn't have any extra parameters.
    # (Such values are probably typos.)
    # Also convert the given parameters to the correct type, etc.
    config = treecorr.config.check_config(config, corr3_valid_params, corr3_aliases, logger)

    import pprint
    logger.debug('Using configuration dict:\n%s',pprint.pformat(config))

    if ( 'output_dots' not in config 
          and config.get('log_file',None) is None 
          and config['verbose'] >= 2 ):
        config['output_dots'] = True

    # Set the number of threads
    num_threads = config.get('num_threads',None)
    logger.debug('From config dict, num_threads = %d',num_threads)
    treecorr.set_omp_threads(num_threads, logger)

    # Read in the input files.  Each of these is a list.
    cat1 = treecorr.read_catalogs(config, 'file_name', 'file_list', 0, logger)
    if len(cat1) == 0:
        raise AttributeError("Either file_name or file_list is required")
    cat2 = treecorr.read_catalogs(config, 'file_name2', 'rand_file_list2', 1, logger)
    cat3 = treecorr.read_catalogs(config, 'file_name3', 'rand_file_list3', 1, logger)
    rand1 = treecorr.read_catalogs(config, 'rand_file_name', 'rand_file_list', 0, logger)
    rand2 = treecorr.read_catalogs(config, 'rand_file_name2', 'rand_file_list2', 1, logger)
    rand3 = treecorr.read_catalogs(config, 'rand_file_name3', 'rand_file_list3', 1, logger)
    if len(cat2) == 0 and len(rand2) > 0:
        raise AttributeError("rand_file_name2 is invalid without file_name2")
    if len(cat3) == 0 and len(rand3) > 0:
        raise AttributeError("rand_file_name3 is invalid without file_name3")
    logger.info("Done reading input catalogs")

    # Do GGG correlation function if necessary
    if 'ggg_file_name' in config: #or 'm3_file_name' in config:
        logger.info("Start GGG calculations...")
        ggg = treecorr.GGGCorrelation(config,logger)
        ggg.process(cat1,cat2,cat3)
        logger.info("Done GGG calculations.")
        if 'ggg_file_name' in config:
            ggg.write(config['ggg_file_name'])
        if 'm3_file_name' in config:
            ggg.writeMapSq(config['m3_file_name'])

    # Do NNN correlation function if necessary
    if 'nnn_file_name' in config:
        if len(rand1) == 0:
            raise AttributeError("rand_file_name is required for NNN correlation")
        if len(cat2) > 0 and len(rand2) == 0:
            raise AttributeError("rand_file_name2 is required for NNN cross-correlation")
        if len(cat3) > 0 and len(rand3) == 0:
            raise AttributeError("rand_file_name3 is required for NNN cross-correlation")
        if (len(cat2) > 0) != (len(cat3) > 0):
            raise NotImplementedError(
                "Cannot yet handle 3-point corrleations with only two catalogs. "+
                "Need both cat2 and cat3.")
        logger.info("Start DDD calculations...")
        ddd = treecorr.NNNCorrelation(config,logger)
        ddd.process(cat1,cat2,cat3)
        logger.info("Done DDD calculations.")

        if len(cat2) == 0:
            rrr = treecorr.NNNCorrelation(config,logger)
            rrr.process(rand1)
            logger.info("Done RRR calculations.")

            if config['nnn_statistic'] == 'compensated':
                drr = treecorr.NNNCorrelation(config,logger)
                drr.process(cat1,rand2,rand3)
                logger.info("Done DRR calculations.")
                ddr = treecorr.NNNCorrelation(config,logger)
                ddr.process(cat1,cat2,rand3)
                logger.info("Done DDR calculations.")
                ddd.write(config['nnn_file_name'],rrr,drr,ddr)
            else:
                ddd.write(config['nnn_file_name'],rrr)
        else:
            rrr = treecorr.NNNCorrelation(config,logger)
            rrr.process(rand1,rand2,rand3)
            logger.info("Done RRR calculations.")

            if config['nnn_statistic'] == 'compensated':
                drr = treecorr.NNNCorrelation(config,logger)
                drr.process(cat1,rand2,rand3)
                logger.info("Done DRR calculations.")
                ddr = treecorr.NNNCorrelation(config,logger)
                ddr.process(cat1,cat2,rand3)
                logger.info("Done DDR calculations.")
                rdr = treecorr.NNNCorrelation(config,logger)
                rdr.process(rand1,cat2,rand3)
                logger.info("Done RDR calculations.")
                rrd = treecorr.NNNCorrelation(config,logger)
                rrd.process(rand1,rand2,cat3)
                logger.info("Done RRD calculations.")
                drd = treecorr.NNNCorrelation(config,logger)
                drd.process(cat1,rand2,cat3)
                logger.info("Done DRD calculations.")
                rdd = treecorr.NNNCorrelation(config,logger)
                rdd.process(rand1,cat2,cat3)
                logger.info("Done RDD calculations.")
                ddd.write(config['nnn_file_name'],rrr,drr,ddr,rdr,rrd,drd,rdd)
            else:
                ddd.write(config['nnn_file_name'],rrr)

    # Do KKK correlation function if necessary
    if 'kkk_file_name' in config:
        logger.info("Start KKK calculations...")
        kkk = treecorr.KKKCorrelation(config,logger)
        kkk.process(cat1,cat2,cat3)
        logger.info("Done KKK calculations.")
        kkk.write(config['kkk_file_name'])

    # Do NNG correlation function if necessary
    if False:
    #if 'nng_file_name' in config or 'nnm_file_name' in config:
        if len(cat3) == 0:
            raise AttributeError("file_name3 is required for nng correlation")
        logger.info("Start NNG calculations...")
        nng = treecorr.NNGCorrelation(config,logger)
        nng.process(cat1,cat2,cat3)
        logger.info("Done NNG calculation.")

        # The default ng_statistic is compensated _iff_ rand files are given.
        rrg = None
        if len(rand1) == 0:
            if config.get('nng_statistic',None) == 'compensated':
                raise AttributeError("rand_files is required for nng_statistic = compensated")
        elif config.get('nng_statistic','compensated') == 'compensated':
            rrg = treecorr.NNGCorrelation(config,logger)
            rrg.process(rand1,rand1,cat2)
            logger.info("Done RRG calculation.")

        if 'nng_file_name' in config:
            nng.write(config['nng_file_name'], rrg)
        if 'nnm_file_name' in config:
            nng.writeNNMap(config['nnm_file_name'], rrg)


    # Do NNK correlation function if necessary
    if False:
    #if 'nnk_file_name' in config:
        if len(cat3) == 0:
            raise AttributeError("file_name3 is required for nnk correlation")
        logger.info("Start NNK calculations...")
        nnk = treecorr.NNKCorrelation(config,logger)
        nnk.process(cat1,cat2,cat3)
        logger.info("Done NNK calculation.")

        rrk = None
        if len(rand1) == 0:
            if config.get('nnk_statistic',None) == 'compensated':
                raise AttributeError("rand_files is required for nnk_statistic = compensated")
        elif config.get('nnk_statistic','compensated') == 'compensated':
            rrk = treecorr.NNKCorrelation(config,logger)
            rrk.process(rand1,rand1,cat2)
            logger.info("Done RRK calculation.")

        nnk.write(config['nnk_file_name'], rrk)

    # Do KKG correlation function if necessary
    if False:
    #if 'kkg_file_name' in config:
        if len(cat3) == 0:
            raise AttributeError("file_name3 is required for kkg correlation")
        logger.info("Start KKG calculations...")
        kkg = treecorr.KKGCorrelation(config,logger)
        kkg.process(cat1,cat2,cat3)
        logger.info("Done KKG calculation.")
        kkg.write(config['kkg_file_name'])
Пример #5
0
def corr2(config, logger=None):
    """Run the full two-point correlation function code based on the parameters in the
    given config dict.

    The function print_corr2_params() will output information about the valid parameters
    that are expected to be in the config dict.

    Optionally a logger parameter maybe given, in which case it is used for logging.
    If not given, the logging will be based on the verbose and log_file parameters.

    :param config:  The configuration dict which defines what to do.
    :param logger:  If desired, a logger object for logging. (default: None, in which case
                    one will be built according to the config dict's verbose level.)
    """
    # Setup logger based on config verbose value
    if logger is None:
        logger = treecorr.config.setup_logger(
                treecorr.config.get(config,'verbose',int,1),
                config.get('log_file',None))

    # Check that config doesn't have any extra parameters.
    # (Such values are probably typos.)
    # Also convert the given parameters to the correct type, etc.
    config = treecorr.config.check_config(config, corr2_valid_params, corr2_aliases, logger)

    import pprint
    logger.debug('Using configuration dict:\n%s',pprint.pformat(config))

    if ( 'output_dots' not in config 
          and config.get('log_file',None) is None 
          and config['verbose'] >= 2 ):
        config['output_dots'] = True

    # Set the number of threads
    num_threads = config.get('num_threads',None)
    logger.debug('From config dict, num_threads = %s',num_threads)
    treecorr.set_omp_threads(num_threads, logger)

    # Read in the input files.  Each of these is a list.
    cat1 = treecorr.read_catalogs(config, 'file_name', 'file_list', 0, logger)
    if len(cat1) == 0:
        raise AttributeError("Either file_name or file_list is required")
    cat2 = treecorr.read_catalogs(config, 'file_name2', 'file_list2', 1, logger)
    rand1 = treecorr.read_catalogs(config, 'rand_file_name', 'rand_file_list', 0, logger)
    rand2 = treecorr.read_catalogs(config, 'rand_file_name2', 'rand_file_list2', 1, logger)
    if len(cat2) == 0 and len(rand2) > 0:
        raise AttributeError("rand_file_name2 is invalid without file_name2")
    logger.info("Done reading input catalogs")

    # Do GG correlation function if necessary
    if 'gg_file_name' in config or 'm2_file_name' in config:
        logger.warning("Performing GG calculations...")
        gg = treecorr.GGCorrelation(config,logger)
        gg.process(cat1,cat2)
        logger.info("Done GG calculations.")
        if 'gg_file_name' in config:
            gg.write(config['gg_file_name'])
            logger.warning("Wrote GG correlation to %s",config['gg_file_name'])
        if 'm2_file_name' in config:
            gg.writeMapSq(config['m2_file_name'], m2_uform=config['m2_uform'])
            logger.warning("Wrote Mapsq values to %s",config['m2_file_name'])

    # Do NG correlation function if necessary
    if 'ng_file_name' in config or 'nm_file_name' in config or 'norm_file_name' in config:
        if len(cat2) == 0:
            raise AttributeError("file_name2 is required for ng correlation")
        logger.warning("Performing NG calculations...")
        ng = treecorr.NGCorrelation(config,logger)
        ng.process(cat1,cat2)
        logger.info("Done NG calculation.")

        # The default ng_statistic is compensated _iff_ rand files are given.
        rg = None
        if len(rand1) == 0:
            if config.get('ng_statistic',None) == 'compensated':
                raise AttributeError("rand_files is required for ng_statistic = compensated")
        elif config.get('ng_statistic','compensated') == 'compensated':
            rg = treecorr.NGCorrelation(config,logger)
            rg.process(rand1,cat2)
            logger.info("Done RG calculation.")

        if 'ng_file_name' in config:
            ng.write(config['ng_file_name'], rg)
            logger.warning("Wrote NG correlation to %s",config['ng_file_name'])
        if 'nm_file_name' in config:
            ng.writeNMap(config['nm_file_name'], rg, m2_uform=config['m2_uform'])
            logger.warning("Wrote NMap values to %s",config['nm_file_name'])

        if 'norm_file_name' in config:
            gg = treecorr.GGCorrelation(config,logger)
            gg.process(cat2)
            logger.info("Done GG calculation for norm")
            dd = treecorr.NNCorrelation(config,logger)
            dd.process(cat1)
            logger.info("Done DD calculation for norm")
            rr = treecorr.NNCorrelation(config,logger)
            rr.process(rand1)
            logger.info("Done RR calculation for norm")
            dr = None
            if config['nn_statistic'] == 'compensated':
                dr = treecorr.NNCorrelation(config,logger)
                dr.process(cat1,rand1)
                logger.info("Done DR calculation for norm")
            ng.writeNorm(config['norm_file_name'],gg,dd,rr,dr,rg,m2_uform=config['m2_uform'])
            logger.warning("Wrote Norm values to %s",config['norm_file_name'])

    # Do NN correlation function if necessary
    if 'nn_file_name' in config:
        if len(rand1) == 0:
            raise AttributeError("rand_file_name is required for NN correlation")
        if len(cat2) > 0 and len(rand2) == 0:
            raise AttributeError("rand_file_name2 is required for NN cross-correlation")
        logger.warning("Performing DD calculations...")
        dd = treecorr.NNCorrelation(config,logger)
        dd.process(cat1,cat2)
        logger.info("Done DD calculations.")

        dr = None
        rd = None
        if len(cat2) == 0:
            logger.warning("Performing RR calculations...")
            rr = treecorr.NNCorrelation(config,logger)
            rr.process(rand1)
            logger.info("Done RR calculations.")

            if config['nn_statistic'] == 'compensated':
                logger.warning("Performing DR calculations...")
                dr = treecorr.NNCorrelation(config,logger)
                dr.process(cat1,rand1)
                logger.info("Done DR calculations.")
        else:
            logger.warning("Performing RR calculations...")
            rr = treecorr.NNCorrelation(config,logger)
            rr.process(rand1,rand2)
            logger.info("Done RR calculations.")

            if config['nn_statistic'] == 'compensated':
                logger.warning("Performing DR calculations...")
                dr = treecorr.NNCorrelation(config,logger)
                dr.process(cat1,rand2)
                logger.info("Done DR calculations.")
                rd = treecorr.NNCorrelation(config,logger)
                rd.process(rand1,cat2)
                logger.info("Done RD calculations.")
        dd.write(config['nn_file_name'],rr,dr,rd)
        logger.warning("Wrote NN correlation to %s",config['nn_file_name'])

    # Do KK correlation function if necessary
    if 'kk_file_name' in config:
        logger.warning("Performing KK calculations...")
        kk = treecorr.KKCorrelation(config,logger)
        kk.process(cat1,cat2)
        logger.info("Done KK calculations.")
        kk.write(config['kk_file_name'])
        logger.warning("Wrote KK correlation to %s",config['kk_file_name'])

    # Do NG correlation function if necessary
    if 'nk_file_name' in config:
        if len(cat2) == 0:
            raise AttributeError("file_name2 is required for nk correlation")
        logger.warning("Performing NK calculations...")
        nk = treecorr.NKCorrelation(config,logger)
        nk.process(cat1,cat2)
        logger.info("Done NK calculation.")

        rk = None
        if len(rand1) == 0:
            if config.get('nk_statistic',None) == 'compensated':
                raise AttributeError("rand_files is required for nk_statistic = compensated")
        elif config.get('nk_statistic','compensated') == 'compensated':
            rk = treecorr.NKCorrelation(config,logger)
            rk.process(rand1,cat2)
            logger.info("Done RK calculation.")

        nk.write(config['nk_file_name'], rk)
        logger.warning("Wrote NK correlation to %s",config['nk_file_name'])

    # Do KG correlation function if necessary
    if 'kg_file_name' in config:
        if len(cat2) == 0:
            raise AttributeError("file_name2 is required for kg correlation")
        logger.warning("Performing KG calculations...")
        kg = treecorr.KGCorrelation(config,logger)
        kg.process(cat1,cat2)
        logger.info("Done KG calculation.")
        kg.write(config['kg_file_name'])
        logger.warning("Wrote KG correlation to %s",config['kg_file_name'])
Пример #6
0
def test_list():
    # Test different ways to read in a list of catalog names.
    # This is based on the bug report for Issue #10.

    nobj = 5000
    numpy.random.seed(8675309)

    x_list = []
    y_list = []
    file_names = []
    ncats = 3

    for k in range(ncats):
        x = numpy.random.random_sample(nobj)
        y = numpy.random.random_sample(nobj)
        file_name = os.path.join('data','test_list%d.dat'%k)

        with open(file_name, 'w') as fid:
            # These are intentionally in a different order from the order we parse them.
            fid.write('# ra,dec,x,y,k,g1,g2,w,flag\n')
            for i in range(nobj):
                fid.write(('%.8f %.8f\n')%(x[i],y[i]))
        x_list.append(x)
        y_list.append(y)
        file_names.append(file_name)

    # Start with file_name being a list:
    config = {
        'x_col' : 1,
        'y_col' : 2,
        'file_name' : file_names
    }

    cats = treecorr.read_catalogs(config, key='file_name')
    numpy.testing.assert_equal(len(cats), ncats)
    for k in range(ncats):
        numpy.testing.assert_almost_equal(cats[k].x, x_list[k])
        numpy.testing.assert_almost_equal(cats[k].y, y_list[k])

    # Next check that the list can be just a string with spaces between names:
    config['file_name'] = " ".join(file_names)

    # Also check that it is ok to include file_list to read_catalogs.
    cats = treecorr.read_catalogs(config, 'file_name', 'file_list')
    numpy.testing.assert_equal(len(cats), ncats)
    for k in range(ncats):
        numpy.testing.assert_almost_equal(cats[k].x, x_list[k])
        numpy.testing.assert_almost_equal(cats[k].y, y_list[k])

    # Next check that having the names in a file_list file works:
    list_name = os.path.join('data','test_list.txt')
    with open(list_name, 'w') as fid:
        for name in file_names:
            fid.write(name + '\n')
    del config['file_name']
    config['file_list'] = list_name

    cats = treecorr.read_catalogs(config, 'file_name', 'file_list')
    numpy.testing.assert_equal(len(cats), ncats)
    for k in range(ncats):
        numpy.testing.assert_almost_equal(cats[k].x, x_list[k])
        numpy.testing.assert_almost_equal(cats[k].y, y_list[k])

    # Also, should be allowed to omit file_name arg:
    cats = treecorr.read_catalogs(config, list_key='file_list')
    numpy.testing.assert_equal(len(cats), ncats)
    for k in range(ncats):
        numpy.testing.assert_almost_equal(cats[k].x, x_list[k])
        numpy.testing.assert_almost_equal(cats[k].y, y_list[k])
Пример #7
0
def corr3(config, logger=None):
    """Run the full three-point correlation function code based on the parameters in the
    given config dict.

    The function print_corr3_params() will output information about the valid parameters
    that are expected to be in the config dict.

    Optionally a logger parameter maybe given, in which case it is used for logging.
    If not given, the logging will be based on the verbose and log_file parameters.

    :param config:  The configuration dict which defines what to do.
    :param logger:  If desired, a logger object for logging. (default: None, in which case
                    one will be built according to the config dict's verbose level.)
    """
    # Setup logger based on config verbose value
    if logger is None:
        logger = treecorr.config.setup_logger(
            treecorr.config.get(config, 'verbose', int, 1),
            config.get('log_file', None))

    # Check that config doesn't have any extra parameters.
    # (Such values are probably typos.)
    # Also convert the given parameters to the correct type, etc.
    config = treecorr.config.check_config(config, corr3_valid_params,
                                          corr3_aliases, logger)

    import pprint
    logger.debug('Using configuration dict:\n%s', pprint.pformat(config))

    if ('output_dots' not in config and config.get('log_file', None) is None
            and config['verbose'] >= 2):
        config['output_dots'] = True

    # Set the number of threads
    num_threads = config.get('num_threads', None)
    logger.debug('From config dict, num_threads = %s', num_threads)
    treecorr.set_omp_threads(num_threads, logger)

    # Read in the input files.  Each of these is a list.
    cat1 = treecorr.read_catalogs(config, 'file_name', 'file_list', 0, logger)
    if len(cat1) == 0:
        raise AttributeError("Either file_name or file_list is required")
    cat2 = treecorr.read_catalogs(config, 'file_name2', 'rand_file_list2', 1,
                                  logger)
    cat3 = treecorr.read_catalogs(config, 'file_name3', 'rand_file_list3', 1,
                                  logger)
    rand1 = treecorr.read_catalogs(config, 'rand_file_name', 'rand_file_list',
                                   0, logger)
    rand2 = treecorr.read_catalogs(config, 'rand_file_name2',
                                   'rand_file_list2', 1, logger)
    rand3 = treecorr.read_catalogs(config, 'rand_file_name3',
                                   'rand_file_list3', 1, logger)
    if len(cat2) == 0 and len(rand2) > 0:
        raise AttributeError("rand_file_name2 is invalid without file_name2")
    if len(cat3) == 0 and len(rand3) > 0:
        raise AttributeError("rand_file_name3 is invalid without file_name3")
    logger.info("Done reading input catalogs")

    # Do GGG correlation function if necessary
    if 'ggg_file_name' in config:  #or 'm3_file_name' in config:
        logger.info("Start GGG calculations...")
        ggg = treecorr.GGGCorrelation(config, logger)
        ggg.process(cat1, cat2, cat3)
        logger.info("Done GGG calculations.")
        if 'ggg_file_name' in config:
            ggg.write(config['ggg_file_name'])
        if 'm3_file_name' in config:
            ggg.writeMapSq(config['m3_file_name'])

    # Do NNN correlation function if necessary
    if 'nnn_file_name' in config:
        if len(rand1) == 0:
            raise AttributeError(
                "rand_file_name is required for NNN correlation")
        if len(cat2) > 0 and len(rand2) == 0:
            raise AttributeError(
                "rand_file_name2 is required for NNN cross-correlation")
        if len(cat3) > 0 and len(rand3) == 0:
            raise AttributeError(
                "rand_file_name3 is required for NNN cross-correlation")
        if (len(cat2) > 0) != (len(cat3) > 0):
            raise NotImplementedError(
                "Cannot yet handle 3-point corrleations with only two catalogs. "
                + "Need both cat2 and cat3.")
        logger.info("Start DDD calculations...")
        ddd = treecorr.NNNCorrelation(config, logger)
        ddd.process(cat1, cat2, cat3)
        logger.info("Done DDD calculations.")

        if len(cat2) == 0:
            rrr = treecorr.NNNCorrelation(config, logger)
            rrr.process(rand1)
            logger.info("Done RRR calculations.")

            # For the next step, just make cat2 = cat3 = cat1 and rand2 = rand3 = rand1.
            cat2 = cat3 = cat1
            rand2 = rand3 = rand1
        else:
            rrr = treecorr.NNNCorrelation(config, logger)
            rrr.process(rand1, rand2, rand3)
            logger.info("Done RRR calculations.")

        if config['nnn_statistic'] == 'compensated':
            drr = treecorr.NNNCorrelation(config, logger)
            drr.process(cat1, rand2, rand3)
            logger.info("Done DRR calculations.")
            ddr = treecorr.NNNCorrelation(config, logger)
            ddr.process(cat1, cat2, rand3)
            logger.info("Done DDR calculations.")
            rdr = treecorr.NNNCorrelation(config, logger)
            rdr.process(rand1, cat2, rand3)
            logger.info("Done RDR calculations.")
            rrd = treecorr.NNNCorrelation(config, logger)
            rrd.process(rand1, rand2, cat3)
            logger.info("Done RRD calculations.")
            drd = treecorr.NNNCorrelation(config, logger)
            drd.process(cat1, rand2, cat3)
            logger.info("Done DRD calculations.")
            rdd = treecorr.NNNCorrelation(config, logger)
            rdd.process(rand1, cat2, cat3)
            logger.info("Done RDD calculations.")
            ddd.write(config['nnn_file_name'], rrr, drr, rdr, rrd, ddr, drd,
                      rdd)
        else:
            ddd.write(config['nnn_file_name'], rrr)

    # Do KKK correlation function if necessary
    if 'kkk_file_name' in config:
        logger.info("Start KKK calculations...")
        kkk = treecorr.KKKCorrelation(config, logger)
        kkk.process(cat1, cat2, cat3)
        logger.info("Done KKK calculations.")
        kkk.write(config['kkk_file_name'])

    # Do NNG correlation function if necessary
    if False:
        #if 'nng_file_name' in config or 'nnm_file_name' in config:
        if len(cat3) == 0:
            raise AttributeError("file_name3 is required for nng correlation")
        logger.info("Start NNG calculations...")
        nng = treecorr.NNGCorrelation(config, logger)
        nng.process(cat1, cat2, cat3)
        logger.info("Done NNG calculation.")

        # The default ng_statistic is compensated _iff_ rand files are given.
        rrg = None
        if len(rand1) == 0:
            if config.get('nng_statistic', None) == 'compensated':
                raise AttributeError(
                    "rand_files is required for nng_statistic = compensated")
        elif config.get('nng_statistic', 'compensated') == 'compensated':
            rrg = treecorr.NNGCorrelation(config, logger)
            rrg.process(rand1, rand1, cat2)
            logger.info("Done RRG calculation.")

        if 'nng_file_name' in config:
            nng.write(config['nng_file_name'], rrg)
        if 'nnm_file_name' in config:
            nng.writeNNMap(config['nnm_file_name'], rrg)

    # Do NNK correlation function if necessary
    if False:
        #if 'nnk_file_name' in config:
        if len(cat3) == 0:
            raise AttributeError("file_name3 is required for nnk correlation")
        logger.info("Start NNK calculations...")
        nnk = treecorr.NNKCorrelation(config, logger)
        nnk.process(cat1, cat2, cat3)
        logger.info("Done NNK calculation.")

        rrk = None
        if len(rand1) == 0:
            if config.get('nnk_statistic', None) == 'compensated':
                raise AttributeError(
                    "rand_files is required for nnk_statistic = compensated")
        elif config.get('nnk_statistic', 'compensated') == 'compensated':
            rrk = treecorr.NNKCorrelation(config, logger)
            rrk.process(rand1, rand1, cat2)
            logger.info("Done RRK calculation.")

        nnk.write(config['nnk_file_name'], rrk)

    # Do KKG correlation function if necessary
    if False:
        #if 'kkg_file_name' in config:
        if len(cat3) == 0:
            raise AttributeError("file_name3 is required for kkg correlation")
        logger.info("Start KKG calculations...")
        kkg = treecorr.KKGCorrelation(config, logger)
        kkg.process(cat1, cat2, cat3)
        logger.info("Done KKG calculation.")
        kkg.write(config['kkg_file_name'])
Пример #8
0
def corr3(config, logger=None):
    """Run the full three-point correlation function code based on the parameters in the
    given config dict.

    The function `print_corr3_params` will output information about the valid parameters
    that are expected to be in the config dict.

    Optionally a logger parameter maybe given, in which case it is used for logging.
    If not given, the logging will be based on the verbose and log_file parameters.

    :param config:  The configuration dict which defines what to do.
    :param logger:  If desired, a logger object for logging. (default: None, in which case
                    one will be built according to the config dict's verbose level.)
    """
    # Setup logger based on config verbose value
    if logger is None:
        logger = treecorr.config.setup_logger(
            treecorr.config.get(config, 'verbose', int, 1),
            config.get('log_file', None))

    # Check that config doesn't have any extra parameters.
    # (Such values are probably typos.)
    # Also convert the given parameters to the correct type, etc.
    config = treecorr.config.check_config(config, corr3_valid_params,
                                          corr3_aliases, logger)

    import pprint
    logger.debug('Using configuration dict:\n%s', pprint.pformat(config))

    if ('output_dots' not in config and config.get('log_file', None) is None
            and config['verbose'] >= 2):
        config['output_dots'] = True

    # Set the number of threads
    num_threads = config.get('num_threads', None)
    logger.debug('From config dict, num_threads = %s', num_threads)
    treecorr.set_omp_threads(num_threads, logger)

    # Read in the input files.  Each of these is a list.
    cat1 = treecorr.read_catalogs(config, 'file_name', 'file_list', 0, logger)
    cat2 = treecorr.read_catalogs(config, 'file_name2', 'rand_file_list2', 1,
                                  logger)
    cat3 = treecorr.read_catalogs(config, 'file_name3', 'rand_file_list3', 1,
                                  logger)
    rand1 = treecorr.read_catalogs(config, 'rand_file_name', 'rand_file_list',
                                   0, logger)
    rand2 = treecorr.read_catalogs(config, 'rand_file_name2',
                                   'rand_file_list2', 1, logger)
    rand3 = treecorr.read_catalogs(config, 'rand_file_name3',
                                   'rand_file_list3', 1, logger)
    if len(cat1) == 0:
        raise TypeError("Either file_name or file_list is required")
    if len(cat2) == 0: cat2 = None
    if len(cat3) == 0: cat3 = None
    if len(rand1) == 0: rand1 = None
    if len(rand2) == 0: rand2 = None
    if len(rand3) == 0: rand3 = None
    if cat2 is None and rand2 is not None:
        raise TypeError("rand_file_name2 is invalid without file_name2")
    if cat3 is None and rand3 is not None:
        raise TypeError("rand_file_name3 is invalid without file_name3")
    if (cat2 is None) != (cat3 is None):
        raise NotImplementedError(
            "Cannot yet handle 3-point corrleations with only two catalogs. " +
            "Need both cat2 and cat3.")
    logger.info("Done reading input catalogs")

    # Do GGG correlation function if necessary
    if 'ggg_file_name' in config or 'm3_file_name' in config:
        logger.warning("Performing GGG calculations...")
        ggg = treecorr.GGGCorrelation(config, logger)
        ggg.process(cat1, cat2, cat3)
        logger.info("Done GGG calculations.")
        if 'ggg_file_name' in config:
            ggg.write(config['ggg_file_name'])
            logger.warning("Wrote GGG correlation to %s",
                           config['ggg_file_name'])
        if 'm3_file_name' in config:
            ggg.writeMap3(config['m3_file_name'])
            logger.warning("Wrote Map3 values to %s", config['m3_file_name'])

    # Do NNN correlation function if necessary
    if 'nnn_file_name' in config:
        logger.warning("Performing DDD calculations...")
        ddd = treecorr.NNNCorrelation(config, logger)
        ddd.process(cat1, cat2, cat3)
        logger.info("Done DDD calculations.")

        drr = None
        rdr = None
        rrd = None
        ddr = None
        drd = None
        rdd = None
        if rand1 is None:
            if rand2 is not None or rand3 is not None:
                raise TypeError(
                    "rand_file_name is required if rand2 or rand3 is given")
            logger.warning(
                "No random catalogs given.  Only doing ntri calculation.")
            rrr = None
        elif cat2 is None:
            logger.warning("Performing RRR calculations...")
            rrr = treecorr.NNNCorrelation(config, logger)
            rrr.process(rand1)
            logger.info("Done RRR calculations.")

            # For the next step, just make cat2 = cat3 = cat1 and rand2 = rand3 = rand1.
            cat2 = cat3 = cat1
            rand2 = rand3 = rand1
        else:
            if rand2 is None:
                raise TypeError(
                    "rand_file_name2 is required when file_name2 is given")
            if cat3 is not None and rand3 is None:
                raise TypeError(
                    "rand_file_name3 is required when file_name3 is given")
            logger.warning("Performing RRR calculations...")
            rrr = treecorr.NNNCorrelation(config, logger)
            rrr.process(rand1, rand2, rand3)
            logger.info("Done RRR calculations.")

        if rrr is not None and config['nnn_statistic'] == 'compensated':
            logger.warning("Performing DRR calculations...")
            drr = treecorr.NNNCorrelation(config, logger)
            drr.process(cat1, rand2, rand3)
            logger.info("Done DRR calculations.")
            logger.warning("Performing DDR calculations...")
            ddr = treecorr.NNNCorrelation(config, logger)
            ddr.process(cat1, cat2, rand3)
            logger.info("Done DDR calculations.")
            logger.warning("Performing RDR calculations...")
            rdr = treecorr.NNNCorrelation(config, logger)
            rdr.process(rand1, cat2, rand3)
            logger.info("Done RDR calculations.")
            logger.warning("Performing RRD calculations...")
            rrd = treecorr.NNNCorrelation(config, logger)
            rrd.process(rand1, rand2, cat3)
            logger.info("Done RRD calculations.")
            logger.warning("Performing DRD calculations...")
            drd = treecorr.NNNCorrelation(config, logger)
            drd.process(cat1, rand2, cat3)
            logger.info("Done DRD calculations.")
            logger.warning("Performing RDD calculations...")
            rdd = treecorr.NNNCorrelation(config, logger)
            rdd.process(rand1, cat2, cat3)
            logger.info("Done RDD calculations.")
        ddd.write(config['nnn_file_name'], rrr, drr, rdr, rrd, ddr, drd, rdd)
        logger.warning("Wrote NNN correlation to %s", config['nnn_file_name'])

    # Do KKK correlation function if necessary
    if 'kkk_file_name' in config:
        logger.warning("Performing KKK calculations...")
        kkk = treecorr.KKKCorrelation(config, logger)
        kkk.process(cat1, cat2, cat3)
        logger.info("Done KKK calculations.")
        kkk.write(config['kkk_file_name'])
        logger.warning("Wrote KKK correlation to %s", config['kkk_file_name'])
Пример #9
0
def corr3(config, logger=None):
    """Run the full three-point correlation function code based on the parameters in the
    given config dict.

    The function `print_corr3_params` will output information about the valid parameters
    that are expected to be in the config dict.

    Optionally a logger parameter maybe given, in which case it is used for logging.
    If not given, the logging will be based on the verbose and log_file parameters.

    :param config:  The configuration dict which defines what to do.
    :param logger:  If desired, a logger object for logging. (default: None, in which case
                    one will be built according to the config dict's verbose level.)
    """
    # Setup logger based on config verbose value
    if logger is None:
        logger = treecorr.config.setup_logger(
                treecorr.config.get(config,'verbose',int,1),
                config.get('log_file',None))

    # Check that config doesn't have any extra parameters.
    # (Such values are probably typos.)
    # Also convert the given parameters to the correct type, etc.
    config = treecorr.config.check_config(config, corr3_valid_params, corr3_aliases, logger)

    import pprint
    logger.debug('Using configuration dict:\n%s',pprint.pformat(config))

    if ( 'output_dots' not in config
          and config.get('log_file',None) is None
          and config['verbose'] >= 2 ):
        config['output_dots'] = True

    # Set the number of threads
    num_threads = config.get('num_threads',None)
    logger.debug('From config dict, num_threads = %s',num_threads)
    treecorr.set_omp_threads(num_threads, logger)

    # Read in the input files.  Each of these is a list.
    cat1 = treecorr.read_catalogs(config, 'file_name', 'file_list', 0, logger)
    cat2 = treecorr.read_catalogs(config, 'file_name2', 'rand_file_list2', 1, logger)
    cat3 = treecorr.read_catalogs(config, 'file_name3', 'rand_file_list3', 1, logger)
    rand1 = treecorr.read_catalogs(config, 'rand_file_name', 'rand_file_list', 0, logger)
    rand2 = treecorr.read_catalogs(config, 'rand_file_name2', 'rand_file_list2', 1, logger)
    rand3 = treecorr.read_catalogs(config, 'rand_file_name3', 'rand_file_list3', 1, logger)
    if len(cat1) == 0:
        raise TypeError("Either file_name or file_list is required")
    if len(cat2) == 0: cat2 = None
    if len(cat3) == 0: cat3 = None
    if len(rand1) == 0: rand1 = None
    if len(rand2) == 0: rand2 = None
    if len(rand3) == 0: rand3 = None
    if cat2 is None and rand2 is not None:
        raise TypeError("rand_file_name2 is invalid without file_name2")
    if cat3 is None and rand3 is not None:
        raise TypeError("rand_file_name3 is invalid without file_name3")
    if (cat2 is None) != (cat3 is None):
        raise NotImplementedError(
            "Cannot yet handle 3-point corrleations with only two catalogs. "+
            "Need both cat2 and cat3.")
    logger.info("Done reading input catalogs")

    # Do GGG correlation function if necessary
    if 'ggg_file_name' in config or 'm3_file_name' in config:
        logger.warning("Performing GGG calculations...")
        ggg = treecorr.GGGCorrelation(config,logger)
        ggg.process(cat1,cat2,cat3)
        logger.info("Done GGG calculations.")
        if 'ggg_file_name' in config:
            ggg.write(config['ggg_file_name'])
            logger.warning("Wrote GGG correlation to %s",config['ggg_file_name'])
        if 'm3_file_name' in config:
            ggg.writeMap3(config['m3_file_name'])
            logger.warning("Wrote Map3 values to %s",config['m3_file_name'])

    # Do NNN correlation function if necessary
    if 'nnn_file_name' in config:
        logger.warning("Performing DDD calculations...")
        ddd = treecorr.NNNCorrelation(config,logger)
        ddd.process(cat1,cat2,cat3)
        logger.info("Done DDD calculations.")

        drr = None
        rdr = None
        rrd = None
        ddr = None
        drd = None
        rdd = None
        if rand1 is None:
            if rand2 is not None or rand3 is not None:
                raise TypeError("rand_file_name is required if rand2 or rand3 is given")
            logger.warning("No random catalogs given.  Only doing ntri calculation.")
            rrr = None
        elif cat2 is None:
            logger.warning("Performing RRR calculations...")
            rrr = treecorr.NNNCorrelation(config,logger)
            rrr.process(rand1)
            logger.info("Done RRR calculations.")

            # For the next step, just make cat2 = cat3 = cat1 and rand2 = rand3 = rand1.
            cat2 = cat3 = cat1
            rand2 = rand3 = rand1
        else:
            if rand2 is None:
                raise TypeError("rand_file_name2 is required when file_name2 is given")
            if cat3 is not None and rand3 is None:
                raise TypeError("rand_file_name3 is required when file_name3 is given")
            logger.warning("Performing RRR calculations...")
            rrr = treecorr.NNNCorrelation(config,logger)
            rrr.process(rand1,rand2,rand3)
            logger.info("Done RRR calculations.")

        if rrr is not None and config['nnn_statistic'] == 'compensated':
            logger.warning("Performing DRR calculations...")
            drr = treecorr.NNNCorrelation(config,logger)
            drr.process(cat1,rand2,rand3)
            logger.info("Done DRR calculations.")
            logger.warning("Performing DDR calculations...")
            ddr = treecorr.NNNCorrelation(config,logger)
            ddr.process(cat1,cat2,rand3)
            logger.info("Done DDR calculations.")
            logger.warning("Performing RDR calculations...")
            rdr = treecorr.NNNCorrelation(config,logger)
            rdr.process(rand1,cat2,rand3)
            logger.info("Done RDR calculations.")
            logger.warning("Performing RRD calculations...")
            rrd = treecorr.NNNCorrelation(config,logger)
            rrd.process(rand1,rand2,cat3)
            logger.info("Done RRD calculations.")
            logger.warning("Performing DRD calculations...")
            drd = treecorr.NNNCorrelation(config,logger)
            drd.process(cat1,rand2,cat3)
            logger.info("Done DRD calculations.")
            logger.warning("Performing RDD calculations...")
            rdd = treecorr.NNNCorrelation(config,logger)
            rdd.process(rand1,cat2,cat3)
            logger.info("Done RDD calculations.")
        ddd.write(config['nnn_file_name'],rrr,drr,rdr,rrd,ddr,drd,rdd)
        logger.warning("Wrote NNN correlation to %s",config['nnn_file_name'])

    # Do KKK correlation function if necessary
    if 'kkk_file_name' in config:
        logger.warning("Performing KKK calculations...")
        kkk = treecorr.KKKCorrelation(config,logger)
        kkk.process(cat1,cat2,cat3)
        logger.info("Done KKK calculations.")
        kkk.write(config['kkk_file_name'])
        logger.warning("Wrote KKK correlation to %s",config['kkk_file_name'])