Пример #1
0
def update(utree, freq):
    updt_tree = Tree(tree=utree, deep=True)
    for item in utree.expand_tree('root'):
        if item == 'root':
            continue
        if updt_tree.contains(item) and utree[item].data < freq:
            updt_tree.remove_node(item)
    return updt_tree
Пример #2
0
 def test_root_removal(self):
     t = Tree()
     t.create_node(identifier="root-A")
     self.assertEqual(len(t.nodes.keys()), 1)
     self.assertEqual(t.root, 'root-A')
     t.remove_node(identifier="root-A")
     self.assertEqual(len(t.nodes.keys()), 0)
     self.assertEqual(t.root, None)
     t.create_node(identifier="root-B")
     self.assertEqual(len(t.nodes.keys()), 1)
     self.assertEqual(t.root, 'root-B')
Пример #3
0
    def _build_tree(self, scores: ndarray, bin_edges: ndarray) -> Tree:

        # Build tree with specified number of children at each level
        tree = Tree()
        tree.add_node(Node())  # root node
        nodes_prev = [tree.get_node(tree.root)]
        for level in range(self.depth):
            nodes_current = []
            for node in nodes_prev:
                children = []
                for _ in range(self.n_children[level]):
                    child = Node()
                    tree.add_node(child, parent=node)
                    children.append(child)
                nodes_current.extend(children)
            nodes_prev = nodes_current

        assignments = np.digitize(scores, bin_edges) - 1

        # Store instance ids in leaves
        leaves = tree.leaves()
        for k, node in enumerate(leaves):
            instance_ids = np.where(assignments == k)[0]
            if instance_ids.size == 0:
                tree.remove_node(node.identifier)
            else:
                node.data = instance_ids

        # Prune empty leaves
        check_for_empty_leaves = True
        while check_for_empty_leaves:
            check_for_empty_leaves = False
            leaves = tree.leaves()
            for node in leaves:
                if node.data is None and len(node.successors(
                        tree.identifier)) == 0:
                    # Node is empty and has no siblings
                    tree.remove_node(node.identifier)
                    check_for_empty_leaves = True

        # Simplify tree: remove nodes that only have one child
        for nid in tree.expand_tree(mode=tree.WIDTH):
            children = tree.children(nid)
            if len(children) == 1:
                tree.link_past_node(nid)

        return tree
Пример #4
0
    def create_tree(files):
        tree = Tree()
        root = files[0]
        tree.create_node(f"[{root.url.split('/')[0]}]", root.url.split("/")[0])
        for item in files:
            if not tree.contains(item.url):
                pieces = item.url.split("/")
                for index, path in enumerate(pieces, 1):
                    if not tree.contains("/".join(pieces[:index])):
                        if len(pieces) == index and item.is_file:
                            path = f"{path} ({item.qty_lines} linhas)"
                        else:
                            path = f"[{path}]"
                        tree.create_node(path, "/".join(pieces[:index]),
                                         parent="/".join(pieces[:index - 1]))

        if tree.contains(f'{root.url}/tree'):
            tree.remove_node(f'{root.url}/tree')

        return tree
Пример #5
0
class RMQueue(object):
    __metaclass__ = Singleton

    def __init__(self):
        self.tree = Tree()
        self.MAX_METRIC_COUNT = 12
        self.CAL_INTERVAL_IN_SECOND = 2 * 60 * 60
        self.conf = conf.Config("./conf/config.json")

    def set_stat_interval(self, interval):
        self.CAL_INTERVAL_IN_SECOND = interval

    def set_system_memory(self, size):
        root = self.get_root()
        root.data.set_abs_memory(float(size))

    def create_queue(self, name=None, parent=None):
        data = QueueData()
        self.tree.create_node(name, name, parent, data)

    def display(self):
        self.tree.show()

    def display_score(self, queue=None, depth=0, table=None, printer=None):
        flag = False
        if queue is None:
            queue = self.get_root()
            flag = True
            table = PrettyTable([
                "QUEUE", "PENDING AVG", "PENDING DIV", "MEMORY USAGE AVG(Q)",
                "MEMORY USAGE AVG(C)", "MEMORY USAGE DIV", "ABS CAPACITY"
            ])
        if table is not None:
            table.add_row([
                queue.tag, 0 if queue.data.get_pending() == 0 else "%.3f" %
                queue.data.get_pending(),
                0 if queue.data.get_pending_div() == 0 else "%.3f" %
                queue.data.get_pending_div(),
                0 if queue.data.get_mem_usage() == 0 else "%.3f" %
                queue.data.get_mem_usage(),
                0 if queue.data.cal_queue_memory_usage() == 0 else "%.3f" %
                queue.data.cal_queue_memory_usage(),
                0 if queue.data.get_mem_usage_div() == 0 else "%.3f" %
                queue.data.get_mem_usage_div(),
                str(0 if queue.data.get_abs_capacity() == 0 else "%.3f" %
                    queue.data.get_abs_capacity()) + " %"
            ])
        if not self.is_leaf(queue.tag):
            children = self.tree.children(queue.tag)
            for child in children:
                self.display_score(child, depth + 1, table)
        if flag:
            if printer is None:
                print('------------' + utils.get_str_time() +
                      ' SCORE ----------')
                print table
            else:
                printer.write('\n------------' + utils.get_str_time() +
                              ' SCORE ----------\n')
                printer.write(str(table))

    def display_prediction(self,
                           queue=None,
                           depth=0,
                           table=None,
                           printer=None):
        flag = False
        if queue is None:
            queue = self.get_root()
            flag = True
            table = PrettyTable([
                "QUEUE", "DESIRED CAPACITY(Q)", "DESIRED CAPACITY(C)",
                "ABS CAPACITY"
            ])
        if table is not None:
            table.add_row([
                queue.tag,
                str(0 if queue.data.wish.capacity == 0 else "%.3f" %
                    (100 * queue.data.wish.capacity)) + " %",
                0 if queue.data.wish.abs_capacity == 0 else "%.3f" %
                queue.data.wish.abs_capacity,
                str(0 if queue.data.config.abs_capacity == 0 else "%.3f" %
                    queue.data.config.abs_capacity) + " %"
            ])
        if not self.is_leaf(queue.tag):
            children = self.tree.children(queue.tag)
            for child in children:
                self.display_prediction(child, depth + 1, table)
        if flag:
            if printer is None:
                print('------------' + utils.get_str_time() +
                      ' PREDICTION ----------')
                print table
            else:
                printer.write('\n------------' + utils.get_str_time() +
                              ' PREDICTION ----------\n')
                printer.write(str(table))

    def write_score(self, path):
        FileOperator.touch(path)
        with open(path, 'a') as f:
            self.display_score(printer=f)

    def request_score(self, queue=None):
        if queue is None:
            queue = self.get_root()
        postData = {
            'queue': queue.tag,
            'pending': queue.data.get_pending(),
            'pending_div': queue.data.get_pending_div(),
            'memory_usage': queue.data.get_mem_usage(),
            'memory_usage_div': queue.data.get_mem_usage_div(),
            'abs_capacity': queue.data.get_abs_capacity()
        }
        requests.post(str(self.conf.es_rest_address) +
                      str(self.conf.es_index) + "score",
                      data=json.dumps(postData))
        if not self.is_leaf(queue.tag):
            children = self.tree.children(queue.tag)
            for child in children:
                self.request_score(child)

    def request_prediction(self, queue=None):
        if queue is None:
            queue = self.get_root()
        postData = {
            'queue': queue.tag,
            'wish_capacity': queue.data.wish.capacity,
            'wish_abs_capacity': queue.data.wish.abs_capacity,
            'abs_capacity': queue.data.config.abs_capacity
        }
        requests.post(str(self.conf.es_rest_address) +
                      str(self.conf.es_index) + "prediction",
                      data=json.dumps(postData))
        if not self.is_leaf(queue.tag):
            children = self.tree.children(queue.tag)
            for child in children:
                self.request_prediction(child)

    def write_prediction(self, path):
        FileOperator.touch(path)
        with open(path, 'a') as f:
            self.display_prediction(printer=f)

    def add_job(self, job, qname):
        queue = self.tree.get_node(qname)
        if queue.is_leaf():
            queue.data.add_job(job)
        else:
            print("Cannot add jobs to parent queue", queue.tag,
                  queue.identifier)

    def add_metric(self, qname):
        queue = self.tree.get_node(qname)
        queue.data.add_metric(queue.cur_metric)
        if len(queue.data.metrics) > RMQueue.MAX_METRIC_COUNT:
            del queue.data.metrics[0]

    def remove_queue(self, qname):
        self.tree.remove_node(qname)

    def move_queue(self, src, dest):
        self.tree.move_node(src, dest)

    def get_queue(self, qname):
        return self.tree.get_node(qname)

    def get_root(self):
        return self.get_queue('root')

    def is_leaf(self, qname):
        queue = self.tree.get_node(qname)
        return queue.is_leaf()

    def cal_slowdown(self, queue=None):
        if queue is None:
            queue = self.get_root()

        avg_slowdown = 0.0
        if queue.is_leaf():
            job_count = len(queue.data.jobs)
            for i in list(range(job_count)):
                job = queue.data.jobs[i]
                slowdown = (job.wait_time + job.run_time) / job.run_time
                avg_slowdown += slowdown / job_count
            queue.data.set_job_count(job_count)
            queue.data.cur_metric.slowdown = avg_slowdown
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.cal_slowdown(child)

            job_count = 0
            for child in children:
                job_count += child.data.get_job_count()
            queue.data.set_job_count(job_count)

            if job_count == 0:
                queue.data.cur_metric.slowdown = avg_slowdown
                return avg_slowdown

            for child in children:
                avg_slowdown += child.data.get_job_count(
                ) * child.data.get_slowdown() / job_count
            queue.data.cur_metric.slowdown = avg_slowdown
        return queue.data.get_slowdown()

    def cal_pending(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if queue.is_leaf():
            if len(queue.data.pendings) > 0:
                queue.data.cur_metric.pending = np.mean(queue.data.pendings)
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.cal_pending(child)
                queue.data.cur_metric.pending += child.data.get_pending()

        return queue.data.get_pending()

    def cal_pending_division(self, queue=None):
        if queue is None:
            queue = self.get_root()

        division = 0.0
        if self.is_leaf(queue.tag):
            return division
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.cal_pending_division(child)

            count = len(children)
            avg_pending = queue.data.get_pending() * 1.0 / count
            square_sum = 0.0
            for child in children:
                square_sum += np.square(child.data.get_pending() - avg_pending)

            division = np.sqrt(square_sum / count)
            queue.data.cur_metric.pending_div = division
            return division

    def cal_slowdown_division(self, queue=None):
        if queue is None:
            queue = self.get_root()

        division = 0.0
        if self.is_leaf(queue.tag):
            return division
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.cal_slowdown_division(child)

            square_sum = 0.0
            count = len(children)
            for child in children:
                square_sum += np.square(child.data.get_slowdown() -
                                        queue.data.get_slowdown())

            division = np.sqrt(square_sum / count)
            queue.data.cur_metric.slowdown_div = division
            return division

    def cal_memory_usage(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if queue.is_leaf():
            capacity = queue.data.get_abs_capacity()
            memory_usage = 0.0
            if capacity != 0:
                memory_usage = 100.0 * queue.data.cal_queue_memory_usage(
                ) / capacity
            queue.data.set_mem_usage(memory_usage)
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.cal_memory_usage(child)

            abs_memory_usage = 0
            for child in children:
                abs_memory_usage += child.data.get_abs_memory_usage()

            queue.data.set_mem_usage(100.0 * abs_memory_usage /
                                     queue.data.get_abs_capacity())
        return queue.data.get_mem_usage()

    def cal_mem_usage_division(self, queue=None):
        if queue is None:
            queue = self.get_root()

        std_division = 0.0
        if self.is_leaf(queue.tag):
            queue.data.cur_metric.mem_usage_div = std_division
            return std_division
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.cal_mem_usage_division(child)

            count = len(children)
            total_mem_usage = 0
            for child in children:
                total_mem_usage += child.data.get_mem_usage()
            avg_mem_usage = total_mem_usage / count

            square_sum = 0
            for child in children:
                square_sum += np.square(child.data.get_mem_usage() -
                                        avg_mem_usage)
            std_division = np.sqrt(square_sum / count)
            queue.data.cur_metric.mem_usage_div = std_division
            return std_division

    def cal_abs_capacity_bottom_up(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if self.is_leaf(queue.tag):
            return
        else:
            children = self.tree.children(queue.tag)
            abs_capacity = 0.0
            for child in children:
                self.cal_abs_capacity_bottom_up(child)
                abs_capacity += child.data.get_abs_capacity()
            queue.data.set_abs_capacity(abs_capacity)

    def cal_desired_abs_capacity_bottom_up(self, queue=None, delim=None):
        if queue is None:
            queue = self.get_root()
            delim = 1
        if self.is_leaf(queue.tag):
            queue.data.wish.capacity = queue.data.wish.abs_capacity / delim
        else:
            children = self.tree.children(queue.tag)
            abs_capacity = 0.0
            for child in children:
                self.cal_desired_abs_capacity_bottom_up(
                    child, queue.data.config.abs_capacity * delim / 100)
                abs_capacity += child.data.wish.abs_capacity

            queue.data.wish.capacity = abs_capacity / delim

    def cal_abs_capacity_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()
            queue.data.set_abs_capacity(100.0)

        if self.is_leaf(queue.tag):
            return
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                child.data.set_abs_capacity(queue.data.get_abs_capacity() *
                                            child.data.get_capacity() / 100.0)
                self.cal_abs_capacity_top_down(child)

    def cal_desired_capacity_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()
            queue.data.wish.capacity = 100.0

        if self.is_leaf(queue.tag):
            return
        else:
            children = self.tree.children(queue.tag)
            abs_capacity = queue.data.wish.abs_capacity
            for child in children:
                child.data.wish.capacity = child.data.config.capacity
                if abs_capacity == 0:
                    child.data.wish.capacity = 0
                else:
                    child.data.wish.capacity = child.data.wish.abs_capacity / abs_capacity * 100.0
                self.cal_desired_capacity_top_down(child)

    def cal_capacity_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if self.is_leaf(queue.tag):
            return
        else:
            children = self.tree.children(queue.tag)
            abs_capacity = queue.data.get_abs_capacity()
            for child in children:
                if abs_capacity == 0:
                    child.data.set_capacity(0)
                else:
                    child.data.set_capacity(child.data.get_abs_capacity() /
                                            abs_capacity * 100)
                self.cal_capacity_top_down(child)

    def cal_abs_memory_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()
            queue.data.cal_totalMb_mean()

        if self.is_leaf(queue.tag):
            return
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                child.data.set_abs_memory(queue.data.get_abs_memory() *
                                          child.data.get_capacity() / 100)
                self.cal_abs_memory_top_down(child)

    def clear_mus_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if self.is_leaf(queue.tag):
            queue.data.clear_queue_memory_usage()
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.clear_mus_top_down(child)

    def clear_jobs_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if self.is_leaf(queue.tag):
            queue.data.clear_jobs()
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.clear_jobs_top_down(child)

    def clear_pendings_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if self.is_leaf(queue.tag):
            queue.data.clear_pendings()
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.clear_pendings_top_down(child)

    def score(self):
        # self.cal_abs_capacity_bottom_up()
        # self.cal_capacity_top_down()
        # self.cal_abs_memory_top_down()
        # self.cal_slowdown()
        # self.cal_slowdown_division()
        self.cal_pending()
        self.cal_pending_division()
        self.cal_memory_usage()
        self.cal_mem_usage_division()
        # self.clear_jobs_top_down()
        # self.clear_pendings_top_down()
        # self.clear_mus_top_down()

    def predict(self):
        self.cal_desired_abs_capacity_bottom_up()
Пример #6
0
sub_t.show()

print(sep + "Children of Diane")
for child in tree.is_branch("diane"):
    print(tree[child].tag)

print(sep + "OOhh~ new members join Jill's family:")
new_tree = Tree()
new_tree.create_node("n1", 1)  # root node
new_tree.create_node("n2", 2, parent=1)
new_tree.create_node("n3", 3, parent=1)
tree.paste("jill", new_tree)
tree.show()

print(sep + "They leave after a while:")
tree.remove_node(1)
tree.show()

print(sep + "Now Jill moves to live with Grand-x-father Harry:")
tree.move_node("jill", "harry")
tree.show()

print(sep + "A big family for George to send message to the oldest Harry:")
for node in tree.rsearch("george"):
    print(tree[node].tag)
########NEW FILE########
__FILENAME__ = folder_tree
#!/usr/bin/env python
# A file folder scanner contributed by @holger
#
# You can spicify the scanned folder and file pattern by changing rootPath
Пример #7
0
class RMQueue(metaclass=Singleton):
    MAX_METRIC_COUNT = 12
    CAL_INTERVAL_IN_SECOND = 2 * 60 * 60  # 2hours

    def __init__(self):
        self.tree = Tree()

    def set_stat_interval(self, interval):
        RMQueue.CAL_INTERVAL_IN_SECOND = interval

    def set_system_memory(self, size):
        root = self.get_root()
        root.data.set_abs_memory(float(size))

    def create_queue(self, name=None, parent=None):
        data = QueueData()
        self.tree.create_node(name, name, parent, data)

    def display(self):
        self.tree.show()

    def display_score_old(self, queue=None, depth=0):
        if queue is None:
            queue = self.get_root()
            print('------------' + utils.get_str_time() + ' SCORE ----------')
            print(24 * ' ' + '     SLOWDOWN                MEMORY USAGE ')
            print('QUEUE NAME' + 16 * ' ' +
                  ' AVG        DIV            AVG        DIV')

        if depth >= 0:
            print(queue.tag + (22 - len(queue.tag))*' ' + \
                               '%8.3f' % queue.data.get_slowdown(),  \
                               '  %8.3f    ' % queue.data.get_slowdown_div(), \
                               '  %8.3f' % queue.data.get_mem_usage(), \
                               '  %8.3f' % queue.data.get_mem_usage_div())
            """                                              
             print(queue.tag, '(slowdown: %.3f' % queue.data.get_slowdown(), \
                              'div: %.3f)' % queue.data.get_slowdown_div(), \
                              '(mem usage: %.3f' % queue.data.get_mem_usage(), \
                              'div: %.3f)' % queue.data.get_mem_usage_div())
             """
        else:
            print('-'*depth + queue.tag, '(slowdown: %.3f' % queue.data.get_slowdown(), \
                             'div: %.3f)' % queue.data.get_slowdown_div(), \
                             '(mem usage: %.3f' % queue.data.get_mem_usage(), \
                             'div: %.3f)' % queue.data.get_mem_usage_div())

        if self.is_leaf(queue.tag) == False:
            children = self.tree.children(queue.tag)
            for child in children:
                self.display_score(child, depth + 2)

    def display_score(self, queue=None, depth=0):
        if queue is None:
            queue = self.get_root()
            print('------------' + utils.get_str_time() + ' SCORE ----------')
            print(24 * ' ' + '     PENDING                 MEMORY USAGE ')
            print('QUEUE NAME' + 16 * ' ' +
                  ' AVG        DIV            AVG        DIV')

        if depth >= 0:
            print(queue.tag + (22 - len(queue.tag))*' ' + \
                               '%8.3f' % queue.data.get_pending(),  \
                               '  %8.3f    ' % queue.data.get_pending_div(), \
                               '  %8.3f' % queue.data.get_mem_usage(), \
                               '  %8.3f' % queue.data.get_mem_usage_div())
        else:
            print('-'*depth + queue.tag, '(slowdown: %.3f' % queue.data.get_slowdown(), \
                             'div: %.3f)' % queue.data.get_slowdown_div(), \
                             '(mem usage: %.3f' % queue.data.get_mem_usage(), \
                             'div: %.3f)' % queue.data.get_mem_usage_div())

        if self.is_leaf(queue.tag) == False:
            children = self.tree.children(queue.tag)
            for child in children:
                self.display_score(child, depth + 2)

    def display_prediction(self, queue=None, depth=0):
        if queue is None:
            queue = self.get_root()
            print('------------' + utils.get_str_time() +
                  ' PREDICTION ----------')
            print('QUEUE NAME            DESIRED CAPACITY')

        if depth >= 0:
            print(queue.tag + (22 - len(queue.tag)) * ' ',
                  ' %8.3f' % queue.data.wish.capacity)
            # print(queue.tag, 'desired capacity: %.3f' % queue.data.wish.capacity)
        else:
            print('-' * depth + queue.tag,
                  'desired capacity: %.3f' % queue.data.wish.capacity)

        if self.is_leaf(queue.tag) == False:
            children = self.tree.children(queue.tag)
            for child in children:
                self.display_prediction(child, depth + 2)

    def write_score(self, path):
        with open(path, 'a') as f:
            self.write_score_top_down(output=f)

    def write_score_top_down_old(self, queue=None, depth=0, output=None):
        if queue is None:
            queue = self.get_root()
            output.writelines(
                ('\n---------', utils.get_str_time(), '  SCORE ---------\n'))
            output.writelines(24 * ' ' +
                              '     SLOWDOWN                MEMORY USAGE\n')
            output.writelines('QUEUE NAME' + 16 * ' ' +
                              ' AVG        DIV            AVG        DIV\n')

        if depth >= 0:
            output.writelines(queue.tag + (22 - len(queue.tag))*' ' + \
                                '%8.3f' % queue.data.get_slowdown() +   \
                                '  %8.3f    ' % queue.data.get_slowdown_div() + \
                                '  %8.3f' % queue.data.get_mem_usage() + \
                                '  %8.3f' % queue.data.get_mem_usage_div() + '\n')
            """
            output.writelines( (queue.tag, ' (slowdown: %.3f' % queue.data.get_slowdown(), \
                              ' div: %.3f)' % queue.data.get_slowdown_div(), \
                              ' (mem usage: %.3f' % queue.data.get_mem_usage(), \
                              ' div: %.3f)' % queue.data.get_mem_usage_div(), '\n'))
            """
        else:
            output.writelines(('-'*depth + queue.tag, ' (slowdown: %.3f' % queue.data.get_slowdown(), \
                              ' div: %.3f)' % queue.data.get_slowdown_div(), \
                              ' (mem usage: %.3f' % queue.data.get_mem_usage(), \
                              ' div: %.3f)' % queue.data.get_mem_usage_div(), '\n'))

        if self.is_leaf(queue.tag) == False:
            children = self.tree.children(queue.tag)
            for child in children:
                self.write_score_top_down(child, depth + 2, output)

    def write_score_top_down(self, queue=None, depth=0, output=None):
        if queue is None:
            queue = self.get_root()
            output.writelines(
                ('\n---------', utils.get_str_time(), '  SCORE ---------\n'))
            output.writelines(24 * ' ' +
                              '     PENDING                 MEMORY USAGE\n')
            output.writelines('QUEUE NAME' + 16 * ' ' +
                              ' AVG        DIV            AVG        DIV\n')

        output.writelines(queue.tag + (22 - len(queue.tag))*' ' + \
                            '%8.3f' % queue.data.get_pending() +   \
                            '  %8.3f    ' % queue.data.get_pending_div() + \
                            '  %8.3f' % queue.data.get_mem_usage() + \
                            '  %8.3f' % queue.data.get_mem_usage_div() + '\n')

        if self.is_leaf(queue.tag) == False:
            children = self.tree.children(queue.tag)
            for child in children:
                self.write_score_top_down(child, depth + 2, output)

    def write_prediction(self, path):
        with open(path, 'a') as f:
            self.write_prediction_top_down(output=f)

    def write_prediction_top_down(self, queue=None, depth=0, output=None):
        if queue is None:
            queue = self.get_root()
            output.writelines(('\n---------', utils.get_str_time(),
                               '  PREDICTION---------\n'))
            output.writelines('QUEUE NAME            DESIRED CAPACITY\n')

        if depth >= 0:
            output.writelines(queue.tag + (22 - len(queue.tag)) * ' ' +
                              ' %8.3f' % queue.data.wish.capacity + '\n')
            # output.writelines( (queue.tag, ' desired capacity: %.3f' % queue.data.wish.capacity, '\n'))
        else:
            output.writelines(('-'*depth + queue.tag, \
                                ' desired capacity: %.3f' % queue.data.wish.capacity, '\n'))

        if self.is_leaf(queue.tag) == False:
            children = self.tree.children(queue.tag)
            for child in children:
                self.write_prediction_top_down(child, depth + 2, output)

    def add_job(self, job, qname):
        queue = self.tree.get_node(qname)
        if queue.is_leaf():
            queue.data.add_job(job)
        else:
            print("Canot add jobs to parent queue", queue.tag,
                  queue.identifier)

    def add_metric(self, qname):
        queue = self.tree.get_node(qname)
        queue.data.add_metric(queue.cur_metric)
        if len(queue.data.metrics) > RMQueue.MAX_METRIC_COUNT:
            del queue.data.metrics[0]

    def remove_queue(self, qname):
        """
        Remove a queue indicated by 'qname'; all the successors are
        removed as well.
        Return the number of removed nodes.
        """
        self.tree.remove_node(qname)

    def move_queue(self, src, dest):
        """
        Move a queue indicated by @src parameter to be a child of
        @dest.
        """
        self.tree.move_node(src, dest)

    def get_queue(self, qname):
        return self.tree.get_node(qname)

    def get_root(self):
        return self.get_queue('root')

    def is_leaf(self, qname):
        queue = self.tree.get_node(qname)
        return queue.is_leaf()

    def cal_slowdown(self, queue=None):
        """
        if current queue is a leaf queue:
            calculate the average slowdown in is jobs.
        else:
            calculate the average slowdown of its chilren;
            calculate the average slowdown of current queue through its chilren's average slowdown.
        """
        if queue is None:
            queue = self.get_root()

        avg_slowdown = 0.0
        if queue.is_leaf():
            job_count = len(queue.data.jobs)
            for i in list(range(job_count)):
                job = queue.data.jobs[i]
                slowdown = (job.wait_time + job.run_time) / job.run_time
                avg_slowdown += slowdown / job_count
            queue.data.set_job_count(job_count)
            queue.data.cur_metric.slowdown = avg_slowdown
        else:  # parent queue
            # First, get its all chilren queue, and call each child's cal_slowdown function
            children = self.tree.children(queue.tag)
            for child in children:
                self.cal_slowdown(child)

            # Second, get the job count
            job_count = 0
            for child in children:
                job_count += child.data.get_job_count()
            queue.data.set_job_count(job_count)

            # Finally, calculate the average slowdown of the queue
            if job_count == 0:
                queue.data.cur_metric.slowdown = avg_slowdown
                return avg_slowdown

            for child in children:
                avg_slowdown += child.data.get_job_count(
                ) * child.data.get_slowdown() / job_count
            queue.data.cur_metric.slowdown = avg_slowdown
        return queue.data.get_slowdown()

    def cal_pending(self, queue=None):
        """
        if current queue is a leaf queue:
            calculate the average pending count in is pendings.
        else:
            calculate the average pending of its chilren;
            calculate the pending of current queue through the sum all of its chilren's pending.
        """
        if queue is None:
            queue = self.get_root()

        if queue.is_leaf():
            queue.data.cal_leaf_pending()
        else:  # parent queue
            # First, get its all chilren queue, and call each child's cal_pending function
            # Second, get the sum of all its children pending
            children = self.tree.children(queue.tag)
            for child in children:
                self.cal_pending(child)
                queue.data.cur_metric.pending += child.data.get_pending()

        return queue.data.get_pending()

    def cal_pending_division(self, queue=None):
        """
        if current queue is a leaf queue:
            stdDivision is zero.
        else:
            calculate the standard division of its chilren;
            calculate the standard division of current queue through its chilren's average pending.
        """
        if queue is None:
            queue = self.get_root()

        division = 0.0
        if self.is_leaf(queue.tag):
            return division
        else:  # parent queue
            children = self.tree.children(queue.tag)
            # First, get its all chilren queue, and call each child's calSlowDown function
            for child in children:
                self.cal_pending_division(child)

            # Second, calculate the square sum of division
            count = len(children)
            avg_pending = queue.data.get_pending() * 1.0 / count
            squareSum = 0.0
            for child in children:
                squareSum += np.square(child.data.get_pending() - avg_pending)

            # Finally, calculate the standard division of the queue
            # if count == 0:
            #    queue.data.cur_metric.slowdown_div = division
            #    return division
            division = np.sqrt(squareSum / count)
            queue.data.cur_metric.pending_div = division
            return division

    def cal_slowdown_division(self, queue=None):
        """
        if current queue is a leaf queue:
            stdDivision is zero.
        else:
            calculate the standard division of its chilren;
            calculate the standard division of current queue through its chilren's average slowdown.
        """
        if queue is None:
            queue = self.get_root()

        division = 0.0
        if self.is_leaf(queue.tag):
            return division
        else:  # parent queue
            children = self.tree.children(queue.tag)
            # First, get its all chilren queue, and call each child's calSlowDown function
            for child in children:
                self.cal_slowdown_division(child)

            # Second, calculate the square sum of division
            squareSum = 0.0
            count = len(children)
            for child in children:
                squareSum += np.square(child.data.get_slowdown() -
                                       queue.data.get_slowdown())

            # Finally, calculate the standard division of the queue
            # if count == 0:
            #    queue.data.cur_metric.slowdown_div = division
            #    return division
            division = np.sqrt(squareSum / count)
            queue.data.cur_metric.slowdown_div = division
            return division

    def cal_memory_usage_old(self, queue=None):
        """
        if current queue is a leaf queue:
            MemoryUsage is the (sum of job memorySeconds )/(self.absMemory * CAL_INTERVAL_IN_SECOND)
            Get absUsedMemory by self.memoryUsage * self.absMemory
        else:
            calculate the memory usage of its chilren;
            calculate the absolute used memory of the queue.
            MemoryUsage = absUsedMemory / absMemory
        """
        if queue is None:
            queue = self.get_root()

        memory_usage = 0.0
        if queue.is_leaf():
            total_memory_seconds = queue.data.cal_leaf_mem_second()
            total_memory_capacity = queue.data.get_abs_memory(
            ) * RMQueue.CAL_INTERVAL_IN_SECOND
            memory_usage = 1.0 * total_memory_seconds / total_memory_capacity
            queue.data.set_mem_usage(memory_usage)
            queue.data.cal_abs_used_memory()
        else:  # parent queue
            # First, get its all chilren queue, and call each child's calMemoryUsage function
            children = self.tree.children(queue.tag)
            for child in children:
                self.cal_memory_usage_old(child)

            # Second, calculate the absUsedMemory of current queue
            abs_used_memory = 0
            for child in children:
                abs_used_memory += child.data.get_abs_used_memory()
            queue.data.set_abs_used_memory(abs_used_memory)

            # Finally, calculate the memory usage of the queue
            queue.data.set_mem_usage(1.0 * queue.data.get_abs_used_memory() /
                                     queue.data.get_abs_memory())
        return queue.data.get_mem_usage()

    def cal_memory_usage(self, queue=None):
        """
        if current queue is a leaf queue:
            MemoryUsage is the abs_memoryusage/self.absMemoryCapacity
        else:
            calculate the memory usage of its chilren;
            calculate the absolute memory of the queue.
            MemoryUsage = absUsedMemory / absMemory
        """
        if queue is None:
            queue = self.get_root()

        memory_usage = 0.0
        if queue.is_leaf():
            abs_memory_usage = queue.data.cal_queue_memory_usage()
            abs_memory_capacity = queue.data.get_abs_capacity()
            memory_usage = 100.0 * abs_memory_usage / abs_memory_capacity
            queue.data.set_mem_usage(memory_usage)
            queue.data.set_abs_memory_usage(abs_memory_usage)
        else:  # parent queue
            # First, get its all chilren queue, and call each child's calMemoryUsage function
            children = self.tree.children(queue.tag)
            for child in children:
                self.cal_memory_usage(child)

            # Second, calculate the absUsedMemoryUsage of current queue
            abs_memory_usage = 0
            for child in children:
                abs_memory_usage += child.data.get_abs_memory_usage()
            queue.data.set_abs_memory_usage(abs_memory_usage)

            # Finally, calculate the memory usage of the queue
            queue.data.set_mem_usage(100.0 *
                                     queue.data.get_abs_memory_usage() /
                                     queue.data.get_abs_capacity())
        return queue.data.get_mem_usage()

    def cal_mem_usage_division(self, queue=None):
        """
        if current queue is a leaf queue:
            memUsageDivision is zero.
        else:
            calculate the standard division of its chilren;
            calculate the standard division of current queue through its chilren's average memoryUsage 
        """
        if queue is None:
            queue = self.get_root()

        std_division = 0.0
        if self.is_leaf(queue.tag):
            queue.data.cur_metric.mem_usage_div = std_division
            return std_division
        else:  # parent queue
            # First, get its all chilren queue, and call each child's calSlowDown function
            children = self.tree.children(queue.tag)
            for child in children:
                self.cal_mem_usage_division(child)

            # Second, calculate the average memory usage of all its children
            count = len(children)
            total_mem_usage = 0
            for child in children:
                total_mem_usage += child.data.get_mem_usage()
                # print(child.data.get_mem_usage())
            avg_mem_usage = total_mem_usage / count

            # Finally, calculate the standard division of the queue
            squareSum = 0
            for child in children:
                squareSum += np.square(child.data.get_mem_usage() -
                                       avg_mem_usage)
            std_division = np.sqrt(squareSum / count)
            queue.data.cur_metric.mem_usage_div = std_division
            return std_division

    def cal_abs_capacity_bottom_up(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if self.is_leaf(queue.tag):
            return
        else:
            children = self.tree.children(queue.tag)
            abs_capacity = 0
            for child in children:
                # print("Queue name: %s, abs_capacity: %.2f" %(child.tag, child.data.get_abs_capacity()))
                self.cal_abs_capacity_bottom_up(child)
                abs_capacity += child.data.get_abs_capacity()
            queue.data.set_abs_capacity(abs_capacity)

    def cal_desired_abs_capacity_bottom_up(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if self.is_leaf(queue.tag):
            return
        else:
            children = self.tree.children(queue.tag)
            abs_capacity = 0.0
            fixed_capacity = 0.0
            for child in children:
                self.cal_desired_abs_capacity_bottom_up(child)
                if child.data.config.fixed:
                    # print("FIXED")
                    # print(child.data.config.capacity)
                    # print(child.data.config.abs_capacity)
                    fixed_capacity += child.data.config.capacity
                else:
                    abs_capacity += child.data.wish.abs_capacity

            for child in children:
                if child.data.config.fixed:
                    child.data.wish.abs_capacity = abs_capacity / (
                        100.0 - fixed_capacity) * child.data.config.capacity
            queue.data.wish.abs_capacity = abs_capacity * 100.0 / (
                100.0 - fixed_capacity)

    def clear_desired_abs_capacity(self, queue=None):
        if queue is None:
            queue = self.get_root()

        queue.data.wish.abs_capacity = 0
        if self.is_leaf(queue.tag):
            return
        else:
            queue.data.cur_metric.pending = 0.0
            children = self.tree.children(queue.tag)
            for child in children:
                self.clear_desired_abs_capacity(child)

    def cal_abs_capacity_top_down(self, queue=None):
        """
        This function calculate the abs capacity of each queue by its capacity.
        This function should only be called once at the start time.
        """
        if queue is None:
            queue = self.get_root()
            queue.data.set_abs_capacity(100.0)

        if self.is_leaf(queue.tag):
            return
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                child.data.set_abs_capacity(queue.data.get_abs_capacity() *
                                            child.data.get_capacity() / 100.0)
                # print(child.data.get_abs_capacity())
                self.cal_capacity_top_down(child)

    def cal_desired_capacity_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()
            queue.data.wish.capacity = 100.0

        if self.is_leaf(queue.tag):
            return
        else:
            children = self.tree.children(queue.tag)
            abs_capacity = queue.data.wish.abs_capacity
            remain_capaciy = 100.0
            for child in children:
                if child.data.config.fixed:
                    child.data.wish.capacity = child.data.config.capacity
                elif abs_capacity == 0:
                    child.data.wish.capacity = 0
                else:
                    child.data.wish.capacity = child.data.wish.abs_capacity / abs_capacity * 100.0
                self.cal_desired_capacity_top_down(child)

    def cal_capacity_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if self.is_leaf(queue.tag):
            return
        else:
            children = self.tree.children(queue.tag)
            abs_capacity = queue.data.get_abs_capacity()
            for child in children:
                if abs_capacity == 0:
                    child.data.set_capacity(0)
                else:
                    child.data.set_capacity(child.data.get_abs_capacity() /
                                            abs_capacity * 100)
                self.cal_capacity_top_down(child)

    def cal_abs_memory_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()
            queue.data.cal_totalMb_mean()
            queue.data.clear_totalMb()

        if self.is_leaf(queue.tag):
            return
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                child.data.set_abs_memory(queue.data.get_abs_memory() *
                                          child.data.get_capacity() / 100)
                self.cal_abs_memory_top_down(child)

    def clear_mus_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if self.is_leaf(queue.tag):
            queue.data.clear_queue_memory_usage()
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.clear_mus_top_down(child)

    def clear_jobs_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if self.is_leaf(queue.tag):
            queue.data.clear_jobs()
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.clear_jobs_top_down(child)

    def clear_pendings_top_down(self, queue=None):
        if queue is None:
            queue = self.get_root()

        if self.is_leaf(queue.tag):
            queue.data.clear_pendings()
        else:
            children = self.tree.children(queue.tag)
            for child in children:
                self.clear_pendings_top_down(child)

    def before_scoring(self):
        self.cal_abs_capacity_bottom_up()
        self.cal_capacity_top_down()
        self.cal_abs_memory_top_down()

    def after_scoreing(self):
        self.clear_jobs_top_down()
        self.clear_pendings_top_down()
        self.clear_mus_top_down()

    def score(self):
        self.before_scoring()
        # self.cal_slowdown()
        # self.cal_slowdown_division()
        self.cal_pending()
        self.cal_pending_division()
        self.cal_memory_usage()
        self.cal_mem_usage_division()
        self.after_scoreing()

    def before_predict(self):
        self.cal_desired_abs_capacity_bottom_up()

    def after_predict(self):
        self.clear_desired_abs_capacity()

    def predict(self):
        self.before_predict()
        self.cal_desired_capacity_top_down()
        self.after_predict()
Пример #8
0
if __name__ == '__main__':
    tree = Tree()
    node_id = 0
    root_node = (3, 3, 1, node_id)
    all_nodes = [root_node]
    tree.create_node(tuple_to_string(root_node), root_node)

    depth = int(input("Enter the depth: "))

    for node in all_nodes:
        if node[2] == 1:
            temp_node = (node[0] - 1, node[1] - 1, 0, node_id)
            place_in_tree(temp_node)
            if tree.depth() > depth:
                tree.remove_node(temp_node)
                break
            temp_node = (node[0] - 2, node[1], 0, node_id)
            place_in_tree(temp_node)
            temp_node = (node[0], node[1] - 2, 0, node_id)
            place_in_tree(temp_node)
            temp_node = (node[0] - 1, node[1], 0, node_id)
            place_in_tree(temp_node)
            temp_node = (node[0], node[1] - 1, 0, node_id)
            place_in_tree(temp_node)
        else:
            temp_node = (node[0] + 1, node[1] + 1, 1, node_id)
            place_in_tree(temp_node)
            if tree.depth() > depth:
                tree.remove_node(temp_node)
                break
Пример #9
0
class SAGG_BRIAC():
    def __init__(self, min, max, temperature=20):  # example --> min: [-1,-1] max: [1,1]

        assert len(min) == len(max)
        self.maxlen = 200
        self.window_cp = 200
        self.minlen = self.maxlen / 20
        self.maxregions = 80

        # init regions' tree
        self.tree = Tree()
        self.regions_bounds = [Box(min, max, dtype=np.float32)]
        self.interest = [0.]
        self.tree.create_node('root','root',data=Region(maxlen=self.maxlen,
                                                        cps_gs=[deque(maxlen=self.maxlen + 1), deque(maxlen=self.maxlen + 1)],
                                                        bounds=self.regions_bounds[-1], interest=self.interest[-1]))
        self.nb_dims = len(min)
        self.temperature = temperature
        self.nb_split_attempts = 50
        self.max_difference = 0.2
        self.init_size = max - min
        self.ndims = len(min)
        self.mode_3_noise = 0.1

        # book-keeping
        self.sampled_tasks = []
        self.all_boxes = []
        self.all_interests = []
        self.update_nb = 0
        self.split_iterations = []

    def compute_interest(self, sub_region):
        if len(sub_region[0]) > self.minlen:  # TRICK NB 4
            cp_window = min(len(sub_region[0]), self.window_cp)  # not completely window
            half = int(cp_window / 2)
            # print(str(cp_window) + 'and' + str(half))
            first_half = np.array(sub_region[0])[-cp_window:-half]
            snd_half = np.array(sub_region[0])[-half:]
            diff = first_half.mean() - snd_half.mean()
            cp = np.abs(diff)
        else:
            cp = 0
        interest = np.abs(cp)
        return interest

    def split(self, nid):
        # try nb_split_attempts splits
        reg = self.tree.get_node(nid).data
        best_split_score = 0
        best_abs_interest_diff = 0
        best_bounds = None
        best_sub_regions = None
        is_split = False
        for i in range(self.nb_split_attempts):
            sub_reg1 = [deque(maxlen=self.maxlen + 1), deque(maxlen=self.maxlen + 1)]
            sub_reg2 = [deque(maxlen=self.maxlen + 1), deque(maxlen=self.maxlen + 1)]

            # repeat until the two sub regions contain at least minlen of the mother region TRICK NB 1
            while len(sub_reg1[0]) < self.minlen or len(sub_reg2[0]) < self.minlen:
                # decide on dimension
                dim = np.random.choice(range(self.nb_dims))
                threshold = reg.bounds.sample()[dim]
                bounds1 = Box(reg.bounds.low, reg.bounds.high, dtype=np.float32)
                bounds1.high[dim] = threshold
                bounds2 = Box(reg.bounds.low, reg.bounds.high, dtype=np.float32)
                bounds2.low[dim] = threshold
                bounds = [bounds1, bounds2]
                valid_bounds = True
                if np.any(bounds1.high - bounds1.low < self.init_size / 15):  # to enforce not too small boxes TRICK NB 2
                    valid_bounds = False
                if np.any(bounds2.high - bounds2.low < self.init_size / 15):
                    valid_bounds = valid_bounds and False

                # perform split in sub regions
                sub_reg1 = [deque(maxlen=self.maxlen + 1), deque(maxlen=self.maxlen + 1)]
                sub_reg2 = [deque(maxlen=self.maxlen + 1), deque(maxlen=self.maxlen + 1)]
                for i, task in enumerate(reg.cps_gs[1]):
                    if bounds1.contains(task):
                        sub_reg1[1].append(task)
                        sub_reg1[0].append(reg.cps_gs[0][i])
                    else:
                        sub_reg2[1].append(task)
                        sub_reg2[0].append(reg.cps_gs[0][i])
                sub_regions = [sub_reg1, sub_reg2]

            # compute interest
            interest = [self.compute_interest(sub_reg1), self.compute_interest(sub_reg2)]

            # compute score
            split_score = len(sub_reg1) * len(sub_reg2) * np.abs(interest[0] - interest[1])
            if split_score >= best_split_score and valid_bounds: # TRICK NB 3, max diff #and np.abs(interest[0] - interest[1]) >= self.max_difference / 8
                is_split = True
                best_abs_interest_diff = np.abs(interest[0] - interest[1])
                best_split_score = split_score
                best_sub_regions = sub_regions
                best_bounds = bounds

        if is_split:
            if best_abs_interest_diff > self.max_difference:
                self.max_difference = best_abs_interest_diff
            # add new nodes to tree
            for i, (cps_gs, bounds) in enumerate(zip(best_sub_regions, best_bounds)):
                self.tree.create_node(parent=nid, data=Region(self.maxlen, cps_gs=cps_gs, bounds=bounds, interest=interest[i]))
        else:
            #print("abort mission")
            # TRICK NB 6, remove old stuff if can't find split
            assert len(reg.cps_gs[0]) == (self.maxlen + 1)
            reg.cps_gs[0] = deque(islice(reg.cps_gs[0], int(self.maxlen / 4), self.maxlen + 1))
            reg.cps_gs[1] = deque(islice(reg.cps_gs[1], int(self.maxlen / 4), self.maxlen + 1))

        return is_split

    def merge(self, all_nodes):
        # get a list of children pairs
        parent_children = []
        for n in all_nodes:
            if not n.is_leaf():  # if node is a parent
                children = self.tree.children(n.identifier)
                if children[0].is_leaf() and children[1].is_leaf():  # both children must be leaves for an easy remove
                    parent_children.append([n, children])  # [parent, [child1, child2]]

        # sort each pair of children by their summed interest
        parent_children.sort(key=lambda x: np.abs(x[1][0].data.interest - x[1][1].data.interest), reverse=False)

        # remove useless pair
        child1 = parent_children[0][1][0]
        child2 = parent_children[0][1][1]
        # print("just removed {} and {}, daddy is: {}, childs: {}".format(child1.identifier, child2.identifier,
        #                                                                 parent_children[0][0].identifier,
        #                                                                 self.tree.children(
        #
        # print("bef")  #                                                               parent_children[0][0].identifier)))
        # print([n.identifier for n in self.tree.all_nodes()])
        self.tree.remove_node(child1.identifier)
        self.tree.remove_node(child2.identifier)
        # print("aff remove {} and {}".format(child1.identifier), child2.identifier)
        # print([n.identifier for n in self.tree.all_nodes()])

        # remove 1/4 of parent to avoid falling in a splitting-merging loop
        dadta = parent_children[0][0].data  # hahaha!
        dadta.cps_gs[0] = deque(islice(dadta.cps_gs[0], int(self.maxlen / 4), self.maxlen + 1))
        dadta.cps_gs[1] = deque(islice(dadta.cps_gs[1], int(self.maxlen / 4), self.maxlen + 1))
        self.nodes_to_recompute.append(parent_children[0][0].identifier)

        # remove child from recompute list if they where touched when adding the current task
        if child1.identifier in self.nodes_to_recompute:
            self.nodes_to_recompute.pop(self.nodes_to_recompute.index(child1.identifier))
        if child2.identifier in self.nodes_to_recompute:
            self.nodes_to_recompute.pop(self.nodes_to_recompute.index(child2.identifier))




    def add_task_comp(self, node, task, comp):
        reg = node.data
        nid = node.identifier
        if reg.bounds.contains(task): # task falls within region
            self.nodes_to_recompute.append(nid)
            children = self.tree.children(nid)
            for n in children: # if task in region, task is in one sub-region
                self.add_task_comp(n, task, comp)

            need_split = reg.add(task, comp, children == []) # COPY ALL MODE
            if need_split:
                self.nodes_to_split.append(nid)


    def update(self, task, continuous_competence, all_raw_rewards):
        # add new (task, competence) to regions nodes
        self.nodes_to_split = []
        self.nodes_to_recompute = []
        new_split = False
        root = self.tree.get_node('root')
        self.add_task_comp(root, task, continuous_competence)
        #print(self.nodes_to_split)
        assert len(self.nodes_to_split) <= 1

        # split a node if needed
        need_split = len(self.nodes_to_split) == 1
        if need_split:
            new_split = self.split(self.nodes_to_split[0])
            if new_split:
                self.update_nb += 1
                #print(self.update_nb)
                # update list of regions_bounds
                all_nodes = self.tree.all_nodes()
                if len(all_nodes) > self.maxregions:  # too many regions, lets merge one of them
                    self.merge(all_nodes)
                    all_nodes = self.tree.all_nodes()
                self.regions_bounds = [n.data.bounds for n in all_nodes]

        # recompute interests of touched nodes
        #print(self.nodes_to_recompute)
        for nid in self.nodes_to_recompute:
            #print(nid)
            node = self.tree.get_node(nid)
            reg = node.data
            reg.interest = self.compute_interest(reg.cps_gs)

        # collect new interests and new [comp, tasks] lists
        all_nodes = self.tree.all_nodes()
        self.interest = []
        self.cps_gs = []
        for n in all_nodes:
            self.interest.append(n.data.interest)
            self.cps_gs.append(n.data.cps_gs)

        # bk-keeping
        self.all_boxes.append(copy.copy(self.regions_bounds))
        self.all_interests.append(copy.copy(self.interest))
        self.split_iterations.append(self.update_nb)
        assert len(self.interest) == len(self.regions_bounds)

        return new_split, None

    def draw_random_task(self):
        return self.regions_bounds[0].sample()  # first region is root region

    def sample_task(self, args):
        mode = np.random.rand()
        if mode < 0.1:  # "mode 3" (10%) -> sample on regions and then mutate lowest-performing task in region
            if len(self.sampled_tasks) == 0:
                self.sampled_tasks.append(self.draw_random_task())
            else:
                region_id = proportional_choice(self.interest, eps=0.0)
                worst_task_idx = np.argmin(self.cps_gs[region_id][0])
                # mutate task by a small amount (i.e a gaussian scaled to the regions range)
                task = np.random.normal(self.cps_gs[region_id][1][worst_task_idx].copy(), 0.1)
                # clip to stay within region (add small epsilon to avoid falling in multiple regions)
                task = np.clip(task, self.regions_bounds[region_id].low + 1e-5, self.regions_bounds[region_id].high - 1e-5)
                self.sampled_tasks.append(task)

        elif mode < 0.3:  # "mode 2" (20%) -> random task
            self.sampled_tasks.append(self.draw_random_task())

        else:  # "mode 1" (70%) -> sampling on regions and then random task in selected region
            region_id = proportional_choice(self.interest, eps=0.0)
            self.sampled_tasks.append(self.regions_bounds[region_id].sample())


        # # sample region
        # if np.random.rand() < 0.2:
        #     region_id = np.random.choice(range(self.nb_regions))
        # else:
        #     region_id = np.random.choice(range(self.nb_regions), p=np.array(self.probas))

        # # sample task
        # self.sampled_tasks.append(self.regions_bounds[region_id].sample())
        #
        # return self.sampled_tasks[-1].tolist()
        # sample region
        # region_id = proportional_choice(self.interest, eps=0.2)
        # # sample task
        # self.sampled_tasks.append(self.regions_bounds[region_id].sample())

        return self.sampled_tasks[-1]

    def dump(self, dump_dict):
        dump_dict['all_boxes'] = self.all_boxes
        dump_dict['split_iterations'] = self.split_iterations
        dump_dict['all_interests'] = self.all_interests
        return dump_dict

    @property
    def nb_regions(self):
        return len(self.regions_bounds)

    @property
    def get_regions(self):
        return self.regions_bounds
Пример #10
0
class RAMSTKDataModel(object):  # pragma: no cover
    """
    This is the meta-class for all RAMSTK Data Models.

    :ivar tree: the :class:`treelib.Tree` that will contain the
                structure of the RAMSTK module being modeled..
    :ivar dao: the :class:`ramstk.dao.DAO` object used to communicate
               with the RAMSTK Program database.
    """

    def __init__(self, dao):
        """
        Initialize an RAMSTK data model instance.

        :param dao: the data access object for communicating with the
                    RAMSTK Program database.
        :type dao: :class:`ramstk.dao.DAO.DAO`
        """
        # Initialize private dictionary attributes.

        # Initialize private list attributes.

        # Initialize private scalar attributes.
        self._last_id = None

        # Initialize public dictionary attributes.

        # Initialize public list attributes.

        # Initialize public scalar attributes.
        self.dao = dao
        self.tree = Tree()
        self.last_id = None

        # Add the root to the Tree().  This is neccessary to allow multiple
        # entries at the top level as there can only be one root in a treelib
        # Tree().  Manipulation and viewing of a RAMSTK module tree needs to
        # ignore the root of the tree.
        try:
            self.tree.create_node(tag=self._tag, identifier=0, parent=None)
        except (tree.MultipleRootError, tree.NodeIDAbsentError,
                tree.DuplicatedNodeIdError):
            pass

    def do_select(self, node_id, **kwargs):  # pylint: disable=unused-argument
        """
        Retrieve the instance of the RAMSTK<MODULE> model for the Node ID passed.

        :param int node_id: the Node ID of the data package to retrieve.
        :return: the instance of the RAMSTK<MODULE> class that was requested
                 or None if the requested Node ID does not exist.
        """
        try:
            _entity = self.tree.get_node(node_id).data
        except AttributeError:
            _entity = None
        except tree.NodeIDAbsentError:
            _entity = None

        return _entity

    def do_select_all(self, **kwargs):  # pylint: disable=unused-argument
        """
        Retrieve and build the RAMSTK Module tree.

        :return: an SQLAlchemy session instance.
        :rtype:
        """
        _root = self.tree.root
        for _node in self.tree.children(_root):
            self.tree.remove_node(_node.identifier)

        return self.dao.RAMSTK_SESSION(
            bind=self.dao.engine, autoflush=False, expire_on_commit=False)

    def do_insert(self, **kwargs):
        """
        Add the list of RAMSTK<MODULE> instance to the RAMSTK Program database.

        :param list entities: the list of RAMSTK<MODULE> entities to add to the
                              RAMSTK Program database.
        :return: (_error_code, _msg); the error code and associated message.
        :rtype: (int, str)
        """
        _entities = kwargs['entities']
        _session = self.dao.RAMSTK_SESSION(
            bind=self.dao.engine, autoflush=False, expire_on_commit=False)

        _error_code, _msg = self.dao.db_add(_entities, _session)

        _session.close()

        return _error_code, _msg

    def do_delete(self, node_id):
        """
        Delete the instance of RAMSTK<MODULE> from the RAMSTK Program database.

        :param int node_id entity: the ID of the RAMSTK<MODULE> record to be
                                   removed from the RAMSTK Program database.
        :return: (_error_code, _msg); the error code and associated message.
        :rtype: (int, str)
        """
        _msg = ''

        _session = self.dao.RAMSTK_SESSION(
            bind=self.dao.engine, autoflush=False, expire_on_commit=False)

        try:
            _entity = self.tree.get_node(node_id).data
            _error_code, _msg = self.dao.db_delete(_entity, _session)

            if _error_code == 0:
                self.tree.remove_node(node_id)

        except AttributeError:
            _error_code = 2005

        _session.close()

        return _error_code, _msg

    def do_update(self, node_id):
        """
        Update the RAMSTK<MODULE> instance in the RAMSTK Program database.

        :param entity: the RAMSTK<MODULE> instance to update in the RAMSTK Program
                       database.
        :return: (_error_code, _msg); the error code and associated message.
        :rtype: (int, str)
        """
        _error_code = 0
        _msg = ''

        _session = self.dao.RAMSTK_SESSION(
            bind=self.dao.engine,
            autoflush=True,
            autocommit=False,
            expire_on_commit=False)

        try:
            _entity = self.tree.get_node(node_id).data
            if _entity is not None:
                _session.add(_entity)
                _error_code, _msg = self.dao.db_update(_session)
        except AttributeError:
            _error_code = 1
            _msg = ('RAMSTK ERROR: Attempted to save non-existent '
                    'entity with Node ID {0:s}.').format(str(node_id))

        _session.close()

        return _error_code, _msg
Пример #11
0
print tree.is_branch('diane')
print('\n')


print("#"*4 + "OOhh~ new members enter Jill's family")
new_tree = Tree()
new_tree.create_node("n1", 1)  # root node
new_tree.create_node("n2", 2, parent=1)
new_tree.create_node("n3", 3, parent=1)
tree.paste('jill', new_tree)
tree.show()
print('\n')


print("#"*4 + "We are sorry they are gone accidently :(")
tree.remove_node(1)
tree.show()
print('\n')


print("#"*4 + "Now Jill moves to live with Grand-x-father Harry")
tree.move_node('jill', 'harry')
tree.show()
print('\n')


print("#"*4 + "A big family for George to talk to Grand-x-father Harry")
for node in tree.rsearch('george', filter=lambda x: x.identifier != 'harry'):
    print node
print('harry')
print('\n')
class BasicTree:
    def __init__(self, vehsInfo):
        self.tree = Tree()
        self.root = self.tree.create_node("Root", "root")    # root node
        self.vehsInfo = vehsInfo
        self.vehList = list(vehsInfo.keys())
        self.i = 1


    def _build(self, currentNode, vehList):
        '''
        :param vehList: A dict, keys is the set of vehicles, value is a tuple which represents (lane, position)
        :param currentNode: The current node in the tree
        :return: None
        '''
        s = [currentNode.tag.find(vid) for vid in vehList]    # the quit contidion in recursion
        if (np.array(s) >= 0).all():
            return
        for vehId in vehList:
            if vehId not in currentNode.tag:
                if currentNode.is_root:
                    prefix = currentNode.tag.replace("Root", "")
                else:
                    prefix = currentNode.tag
                self.tree.create_node(prefix + vehId + "-", prefix + vehId, parent=currentNode)
        for node in self.tree.all_nodes():
            if node.is_leaf():
                self._build(currentNode=node, vehList=vehList)


    def _prune(self):
        laneId = [value[0] for value in self.vehsInfo.values()]
        sortedList = []
        for i in list(set(laneId)):
            lane_info = {k: v[1] for k, v in self.vehsInfo.items() if v[0] == i}
            # Vehicles in front are at the front of the lane
            sortedList.append([vid[0] for vid in sorted(lane_info.items(), key=itemgetter(1), reverse=True)])
        pruneList = [sublist for sublist in sortedList if len(sublist) > 1]
        for subList in pruneList:
            for index in range(1, len(subList)):
                # first, prune th subtree which begin with illegal vehicle id
                self.tree.remove_subtree(subList[index])
                # second, delete the nodes which match the illegal pattern
                pattern = subList[index] + ".*" + subList[0]
                for node in self.tree.all_nodes():
                    if re.search(pattern, node.tag):
                        try:
                            self.tree.remove_node(node.identifier)
                        except:
                            pass

    def build(self):
        self._build(self.root, self.vehList)
        self._prune()

    def show(self):
        self.tree.show()

    def _leaves(self):
        '''
        :return: All the plan for vehicle passing currently.
        '''
        all_nodes = self.tree.all_nodes()
        return [node for node in all_nodes if node.is_leaf()]

    def legal_orders(self):
        leaves = self._leaves()
        orders = []
        for pattern in leaves:
            # upToRight.1-leftToBelow.18-belowToRight.2-belowToRight.3-
            tmp = pattern.tag.split("-")
            try:
                tmp.remove('')
            except:
                pass
            if len(tmp) == self.tree.depth():
                orders.append(tmp)
        return orders
Пример #13
0
from treelib import Tree, Node
if __name__ == '__main__':
    # 树的创建,每个节点都有唯一的identifier作为标记,可以手动指定
    tree = Tree()
    # 增加树的节点,tag是树输出时的显示,identifier是唯一标志,根节点可以不指定父
    tree.create_node(tag='root', identifier='root', data=0)
    tree.create_node(tag='1_child',
                     identifier='1_child',
                     data=1,
                     parent='root')
    tree.create_node(tag='2_child',
                     identifier='2_child',
                     data=2,
                     parent='root')
    tree.create_node(tag='3_child',
                     identifier='3_child',
                     data=3,
                     parent='1_child')

    # 树的粘贴,需要注意的是这个nid是tree的identifier,不是tree2的
    tree2 = Tree()
    tree2.create_node(tag='tutu', identifier='tutu', data=0)
    tree.paste(nid='root', new_tree=tree2)

    # 删除树的节点
    tree.remove_node('tutu')
    # 移动树的节点
    tree.move_node('3_child', 'root')
    # 打印树的结构
    tree.show()
Пример #14
0
class PathList:
    def __init__(self, disk):
        self._tree = Tree()
        self._disk = disk
        self._tree.create_node(tag='root', identifier='root', data=FileInfo(type=False))
        self.depth = 3

    def update_path_list(self, file_id='root', depth=None, is_fid=True, **kwargs):
        if depth is None:
            depth = self.depth
        kwargs.setdefault('max_depth', depth)
        max_depth = kwargs['max_depth']
        kwargs.setdefault('get_file_list_bar', GetFileListBar(max_depth))
        kwargs.setdefault('ratio', 0)
        get_file_list_bar = kwargs['get_file_list_bar']
        ratio = kwargs['ratio']
        get_file_list_bar.update(refresh_line=False)
        if not is_fid:
            file_id = self.get_path_fid(file_id, update=False)
        file_list = self._disk.get_file_list(file_id)
        if not file_list:
            if depth == max_depth:
                get_file_list_bar.refresh_line()
            return False
        old_file_list = self._tree.children(file_id)
        for i in old_file_list:
            if i.identifier not in [j['file_id'] for j in file_list]:
                self._tree.remove_node(i.identifier)
        for i, info in enumerate(file_list):
            if depth == max_depth:
                ratio = (i + 1) / len(file_list) if file_list else None
            get_file_list_bar.update(depth=max_depth - depth, ratio=ratio, refresh_line=True)
            file_info = self.get_file_info(info)[0]
            if self._tree.get_node(file_info.id):
                self._tree.update_node(file_info.id, data=file_info)
            else:
                self._tree.create_node(tag=file_info.name, identifier=file_info.id, data=file_info, parent=file_id)
            if not file_info.type and depth:
                self.update_path_list(file_id=file_info.id, depth=depth - 1, max_depth=max_depth,
                                      get_file_list_bar=get_file_list_bar, ratio=ratio)
        if depth == max_depth:
            get_file_list_bar.refresh_line()
        return True

    def check_path_diff(self, local_path, disk_path_list):
        p = Path(local_path)
        change_file_list = []
        for path in p.iterdir():
            flag = False
            for i, path_ in enumerate(disk_path_list, 1):
                name, file_info = list(path_.items())[0]
                if p / name not in p.iterdir():
                    change_file_list.append(p / name)
                if Path(path) == p / name:
                    if Path(path).is_dir() and file_info['data'] and path.is_dir() != file_info['data'].type:
                        if 'children' in file_info:
                            children = file_info['children']
                            change_file_list.extend(self.check_path_diff(p / name, children))
                        elif list(path.iterdir()):
                            change_file_list.extend(list(path.iterdir()))
                    if file_info and file_info['data'] and path.is_file() == file_info['data'].type:
                        if path.is_file() and get_sha1(path).lower() != file_info['data'].content_hash.lower():
                            if i == len(disk_path_list):
                                change_file_list.append(path)
                            continue
                        else:
                            flag = True
                if not flag and i == len(disk_path_list):
                    change_file_list.append(path)
        if not len(list(p.iterdir())):
            for path_ in disk_path_list:
                name, file_info = list(path_.items())[0]
                change_file_list.append(p / name)
        if not len(disk_path_list):
            for path_ in p.iterdir():
                change_file_list.append(path_)
        return list(set(change_file_list))

    @staticmethod
    def get_file_info(info):
        file_info_list = []
        if not isinstance(info, list):
            info_list = [info]
        else:
            info_list = info
        for info in info_list:
            if info['type'] == 'file':
                file_info = FileInfo(name=info['name'], id=info['file_id'], pid=info['parent_file_id'], type=True,
                                     ctime=time.strptime(info['created_at'],
                                                         '%Y-%m-%dT%H:%M:%S.%fZ') if 'created_at' in info else time.localtime(),
                                     update_time=time.strptime(info['updated_at'], '%Y-%m-%dT%H:%M:%S.%fZ'),
                                     hidden=info.get('hidden'), category=info['category'],
                                     content_type=info.get('content_type'),
                                     size=info['size'], content_hash_name=info.get('content_hash_name'),
                                     content_hash=info.get('content_hash'),
                                     download_url=info['download_url'] if 'download_url' in info else '',
                                     video_media_metadata=info[
                                         'video_media_metadata'] if 'video_media_metadata' in info else None,
                                     video_preview_metadata=info[
                                         'video_preview_metadata'] if 'video_preview_metadata' in info else None)
            else:
                file_info = FileInfo(name=info['name'], id=info['file_id'], pid=info['parent_file_id'], type=False,
                                     ctime=time.strptime(info['created_at'],
                                                         '%Y-%m-%dT%H:%M:%S.%fZ') if 'created_at' in info else time.time(),
                                     update_time=time.strptime(info['updated_at'], '%Y-%m-%dT%H:%M:%S.%fZ'),
                                     hidden=info.get('hidden'))
            file_info_list.append(file_info)
        return file_info_list

    def tree(self, path='root', stdout=sys.stdout):
        file_id = self.get_path_fid(path, update=False)
        self.update_path_list(file_id)
        if not file_id:
            raise FileNotFoundError(path)
        return self._tree.show(file_id, stdout=stdout)

    def get_path_list(self, path, update=True):
        file_id = self.get_path_fid(path, update=update)
        try:
            return self.get_fid_list(file_id, update=update)
        except FileNotFoundError:
            raise FileNotFoundError(path)

    def get_fid_list(self, file_id, update=True):
        if not file_id:
            raise FileNotFoundError
        try:
            self.auto_update_path_list(update, file_id)
        except NodeIDAbsentError:
            return list(map(self.get_file_info, self._disk.get_file_list(file_id)))
        if not self._tree.get_node(file_id):
            return []
        if file_id != 'root' and self._tree.get_node(file_id).data.type:
            return [self._tree.get_node(file_id).data]
        return [i.data for i in self._tree.children(file_id)]

    def get_path_fid(self, path, file_id='root', update=True):
        if str(path) in ('', '/', '\\', '.', 'root'):
            return 'root'
        path = AliyunpanPath(path)
        flag = False
        path_list = list(filter(None, path.split()))
        if path_list[0] == 'root':
            path_list = path_list[1:]
        for i in path_list:
            flag = False
            node_list = self._tree.children(file_id)
            if not node_list:
                self.auto_update_path_list(update, file_id)
                node_list = self._tree.children(file_id)
            for j in node_list:
                if i == j.tag:
                    flag = True
                    file_id = j.identifier
                    break
            if not flag:
                return False
        if flag:
            return file_id
        return False

    def get_path_node(self, path, update=True):
        file_id = self.get_path_fid(path, update=update)
        if file_id:
            return self._tree.get_node(file_id)
        return False

    def get_path_parent_node(self, path, update=True):
        file_id = self.get_path_fid(path, update=update)
        if file_id:
            node = self._tree.parent(file_id)
            if node:
                return node
        return False

    def auto_update_path_list(self, update=True, file_id=None):
        if not update and file_id:
            return self.update_path_list(file_id, depth=0)
        elif update and len(self._tree) == 1:
            return self.update_path_list()