Пример #1
0
def render_netcdf(
        filename_pattern,
        variable,
        output_directory,
        renderer_file,
        save_file,
        renderer_type,
        colormap,
        fill,
        colorspace,
        palette,
        palette_stretch,
        scale,
        id_variable,
        lh,
        legend_breaks,
        legend_ticks,
        legend_precision,
        format,
        src_crs,
        dst_crs,
        res,
        resampling,
        anchors,
        interactive_map,
        mask_path):
    """
    Render netcdf files to images.

    colormap is ignored if renderer_file is provided

    --dst-crs is ignored if using --map option (always uses EPSG:3857

    If no colormap or palette is provided, a default palette may be chosen based on the name of the variable.

    If provided, mask must be 1 for areas to be masked out, and 0 otherwise.  It
    must be in the same CRS as the input datasets, and have the same spatial
    dimensions.

    """

    # Parameter overrides
    if interactive_map:
        dst_crs = 'EPSG:3857'

    filenames = glob.glob(filename_pattern)
    if not filenames:
        raise click.BadParameter('No files found matching that pattern', param='filename_pattern', param_hint='FILENAME_PATTERN')

    if not os.path.exists(output_directory):
        os.makedirs(output_directory)

    mask = get_mask(mask_path) if mask_path is not None else None

    if renderer_file is not None and not save_file:
        if not os.path.exists(renderer_file):
            raise click.BadParameter('does not exist', param='renderer_file', param_hint='renderer_file')

        # see https://bitbucket.org/databasin/ncdjango/wiki/Home for format
        renderer_dict = json.loads(open(renderer_file).read())

        if variable in renderer_dict and not 'colors' in renderer_dict:
            renderer_dict = renderer_dict[variable]

        renderer_type = renderer_dict['type']
        if renderer_type == 'stretched':
            colors = ','.join([str(c[0]) for c in renderer_dict['colors']])
            if 'min' in colors or 'max' in colors or 'mean' in colors:
                statistics = collect_statistics(filenames, (variable,), mask=mask)[variable]
                for entry in renderer_dict['colors']:
                    if isinstance(entry[0], basestring):
                        if entry[0] in ('min', 'max', 'mean'):
                            entry[0] = statistics[entry[0]]
                        elif '*' in entry[0]:
                            rel_value, statistic = entry[0].split('*')
                            entry[0] = float(rel_value) * statistics[statistic]

        renderer = renderer_from_dict(renderer_dict)

    else:

        if renderer_type == 'stretched':
            if palette is not None:
                renderer = palette_to_stretched_renderer(palette, palette_stretch, filenames, variable, fill_value=fill, mask=mask)

            elif colormap is None and variable in DEFAULT_PALETTES:
                palette, palette_stretch = DEFAULT_PALETTES[variable]
                renderer = palette_to_stretched_renderer(palette, palette_stretch, filenames, variable, fill_value=fill, mask=mask)

            else:
                if colormap is None:
                    colormap = 'min:#000000,max:#FFFFFF'
                renderer = colormap_to_stretched_renderer(colormap, colorspace, filenames, variable, fill_value=fill, mask=mask)

        elif renderer_type == 'classified':
            if not palette:
                raise click.BadParameter('palette required for classified (for now)',
                                         param='--palette', param_hint='--palette')

            renderer = palette_to_classified_renderer(palette, filenames, variable, method='equal', fill_value=fill, mask=mask)  # TODO: other methods

    if save_file:

        if os.path.exists(save_file):
            with open(save_file, 'r+') as output_file:
                data = json.loads(output_file.read())
                output_file.seek(0)
                output_file.truncate()
                data[variable] = renderer.serialize()
                output_file.write(json.dumps(data, indent=4))
        else:
            with open(save_file, 'w') as output_file:
                output_file.write(json.dumps({variable: renderer.serialize()}))

    if renderer_type == 'stretched':
        if legend_ticks is not None and not legend_breaks:
            legend_ticks = [float(v) for v in legend_ticks.split(',')]

        legend = renderer.get_legend(image_height=lh, breaks=legend_breaks, ticks=legend_ticks, max_precision=legend_precision)[0].to_image()

    elif renderer_type == 'classified':
        legend = composite_elements(renderer.get_legend())

    legend.save(os.path.join(output_directory, '{0}_legend.png'.format(variable)))

    with Dataset(filenames[0]) as ds:
        var_obj = ds.variables[variable]
        dimensions = var_obj.dimensions
        shape = var_obj.shape
        num_dimensions = len(shape)

        if num_dimensions == 3:
            if id_variable:
                if shape[0] != ds.variables[id_variable][:].shape[0]:
                    raise click.BadParameter('must be same dimensionality as 3rd dimension of {0}'.format(variable),
                                             param='--id_variable', param_hint='--id_variable')
            else:
                # Guess from the 3rd dimension
                guess = dimensions[0]
                if guess in ds.variables and ds.variables[guess][:].shape[0] == shape[0]:
                    id_variable = guess

        ds_crs = get_crs(ds, variable)
        if not ds_crs and is_geographic(ds, variable):
            ds_crs = 'EPSG:4326'  # Assume all geographic data is WGS84

        src_crs = CRS.from_string(ds_crs) if ds_crs else CRS({'init': src_crs}) if src_crs else None

        # get transforms, assume last 2 dimensions on variable are spatial in row, col order
        y_dim, x_dim = dimensions[-2:]
        coords = SpatialCoordinateVariables.from_dataset(
            ds, x_dim, y_dim, projection=Proj(src_crs.to_dict()) if src_crs else None
        )

        if mask is not None and not mask.shape == shape[-2:]:
            # Will likely break before this if collecting statistics
            raise click.BadParameter(
                'mask variable shape does not match shape of input spatial dimensions',
                param='--mask', param_hint='--mask'
            )

        flip_y = False
        reproject_kwargs = None
        if dst_crs is not None:
            if not src_crs:
                raise click.BadParameter('must provide src_crs to reproject',
                                         param='--src-crs',
                                         param_hint='--src-crs')

            dst_crs = CRS.from_string(dst_crs)

            src_height, src_width = coords.shape
            dst_transform, dst_width, dst_height = calculate_default_transform(
                src_crs, dst_crs, src_width, src_height,
                *coords.bbox.as_list(), resolution=res
            )

            reproject_kwargs = {
                'src_crs': src_crs,
                'src_transform': coords.affine,
                'dst_crs': dst_crs,
                'dst_transform': dst_transform,
                'resampling': getattr(Resampling, resampling),
                'dst_shape': (dst_height, dst_width)
            }

        else:
            dst_transform = coords.affine
            dst_height, dst_width = coords.shape
            dst_crs = src_crs

            if coords.y.is_ascending_order():
                # Only needed if we are not already reprojecting the data, since that will flip it automatically
                flip_y = True

        if anchors or interactive_map:
            if not (dst_crs or src_crs):
                raise click.BadParameter('must provide at least src_crs to get Leaflet anchors or interactive map',
                                         param='--src-crs', param_hint='--src-crs')

            leaflet_anchors = get_leaflet_anchors(BBox.from_affine(dst_transform, dst_width, dst_height,
                                                           projection=Proj(dst_crs) if dst_crs else None))

            if anchors:
                click.echo('Anchors: {0}'.format(leaflet_anchors))


    layers = {}
    for filename in filenames:
        with Dataset(filename) as ds:
            click.echo('Processing {0}'.format(filename))

            filename_root = os.path.split(filename)[1].replace('.nc', '')

            if not variable in ds.variables:
                raise click.BadParameter('variable {0} was not found in file: {1}'.format(variable, filename),
                                         param='variable', param_hint='VARIABLE')

            var_obj = ds.variables[variable]
            if not var_obj.dimensions == dimensions:
                raise click.ClickException('All datasets must have the same dimensions for {0}'.format(variable))

            if num_dimensions == 2:
                data = var_obj[:]
                if mask is not None:
                    data = numpy.ma.masked_array(data, mask=mask)
                image_filename = os.path.join(output_directory, '{0}_{1}.{2}'.format(filename_root, variable, format))
                if reproject_kwargs:
                    data = warp_array(data, **reproject_kwargs)
                render_image(renderer, data, image_filename, scale, flip_y=flip_y, format=format)

                local_filename = os.path.split(image_filename)[1]
                layers[os.path.splitext(local_filename)[0]] = local_filename

            elif num_dimensions == 3:
                for index in range(shape[0]):
                    id = ds.variables[id_variable][index] if id_variable is not None else index
                    image_filename = os.path.join(output_directory, '{0}_{1}__{2}.{3}'.format(filename_root, variable, id, format))
                    data = var_obj[index]
                    if mask is not None:
                        data = numpy.ma.masked_array(data, mask=mask)
                    if reproject_kwargs:
                        data = warp_array(data, **reproject_kwargs)
                    render_image(renderer, data, image_filename, scale, flip_y=flip_y, format=format)

                    local_filename = os.path.split(image_filename)[1]
                    layers[os.path.splitext(local_filename)[0]] = local_filename



            # TODO: not tested recently.  Make sure still correct
            # else:
            #     # Assume last 2 components of shape are lat & lon, rest are iterated over
            #     id_variables = None
            #     if id_variable is not None:
            #         id_variables = id_variable.split(',')
            #         for index, name in enumerate(id_variables):
            #             if name:
            #                 assert data.shape[index] == ds.variables[name][:].shape[0]
            #
            #     ranges = []
            #     for dim in data.shape[:-2]:
            #         ranges.append(range(0, dim))
            #     for combined_index in product(*ranges):
            #         id_parts = []
            #         for index, dim_index in enumerate(combined_index):
            #             if id_variables is not None and index < len(id_variables) and id_variables[index]:
            #                 id = ds.variables[id_variables[index]][dim_index]
            #
            #                 if not isinstance(id, basestring):
            #                     if isinstance(id, Iterable):
            #                         id = '_'.join((str(i) for i in id))
            #                     else:
            #                         id = str(id)
            #
            #                 id_parts.append(id)
            #
            #             else:
            #                 id_parts.append(str(dim_index))
            #
            #         combined_id = '_'.join(id_parts)
            #         image_filename = os.path.join(output_directory, '{0}__{1}.{2}'.format(filename_root, combined_id, format))
            #         if reproject_kwargs:
            #             data = warp_array(data, **reproject_kwargs)  # NOTE: lack of index will break this
            #         render_image(renderer, data[combined_index], image_filename, scale, flip_y=flip_y, format=format)
            #
            #         local_filename = os.path.split(image_filename)[1]
            #         layers[os.path.splitext(local_filename)[0]] = local_filename


    if interactive_map:
        index_html = os.path.join(output_directory, 'index.html')
        with open(index_html, 'w') as out:
            template = Environment(loader=PackageLoader('trefoil.cli')).get_template('map.html')
            out.write(
                template.render(
                    layers=json.dumps(layers),
                    bounds=str(leaflet_anchors),
                    variable=variable
                )
            )

        webbrowser.open(index_html)
Пример #2
0
def render_netcdf(filename_pattern, variable, output_directory, renderer_file,
                  save_file, renderer_type, colormap, fill, colorspace,
                  palette, palette_stretch, scale, id_variable, lh,
                  legend_breaks, legend_ticks, legend_precision, format,
                  src_crs, dst_crs, res, resampling, anchors, interactive_map,
                  mask_path):
    """
    Render netcdf files to images.

    colormap is ignored if renderer_file is provided

    --dst-crs is ignored if using --map option (always uses EPSG:3857

    If no colormap or palette is provided, a default palette may be chosen based on the name of the variable.

    If provided, mask must be 1 for areas to be masked out, and 0 otherwise.  It
    must be in the same CRS as the input datasets, and have the same spatial
    dimensions.

    """

    # Parameter overrides
    if interactive_map:
        dst_crs = 'EPSG:3857'

    filenames = glob.glob(filename_pattern)
    if not filenames:
        raise click.BadParameter('No files found matching that pattern',
                                 param='filename_pattern',
                                 param_hint='FILENAME_PATTERN')

    if not os.path.exists(output_directory):
        os.makedirs(output_directory)

    mask = get_mask(mask_path) if mask_path is not None else None

    if renderer_file is not None and not save_file:
        if not os.path.exists(renderer_file):
            raise click.BadParameter('does not exist',
                                     param='renderer_file',
                                     param_hint='renderer_file')

        # see https://bitbucket.org/databasin/ncdjango/wiki/Home for format
        renderer_dict = json.loads(open(renderer_file).read())

        if variable in renderer_dict and not 'colors' in renderer_dict:
            renderer_dict = renderer_dict[variable]

        renderer_type = renderer_dict['type']
        if renderer_type == 'stretched':
            colors = ','.join([str(c[0]) for c in renderer_dict['colors']])
            if 'min' in colors or 'max' in colors or 'mean' in colors:
                statistics = collect_statistics(filenames, (variable, ),
                                                mask=mask)[variable]
                for entry in renderer_dict['colors']:
                    if isinstance(entry[0], basestring):
                        if entry[0] in ('min', 'max', 'mean'):
                            entry[0] = statistics[entry[0]]
                        elif '*' in entry[0]:
                            rel_value, statistic = entry[0].split('*')
                            entry[0] = float(rel_value) * statistics[statistic]

        renderer = renderer_from_dict(renderer_dict)

    else:

        if renderer_type == 'stretched':
            if palette is not None:
                renderer = palette_to_stretched_renderer(palette,
                                                         palette_stretch,
                                                         filenames,
                                                         variable,
                                                         fill_value=fill,
                                                         mask=mask)

            elif colormap is None and variable in DEFAULT_PALETTES:
                palette, palette_stretch = DEFAULT_PALETTES[variable]
                renderer = palette_to_stretched_renderer(palette,
                                                         palette_stretch,
                                                         filenames,
                                                         variable,
                                                         fill_value=fill,
                                                         mask=mask)

            else:
                if colormap is None:
                    colormap = 'min:#000000,max:#FFFFFF'
                renderer = colormap_to_stretched_renderer(colormap,
                                                          colorspace,
                                                          filenames,
                                                          variable,
                                                          fill_value=fill,
                                                          mask=mask)

        elif renderer_type == 'classified':
            if not palette:
                raise click.BadParameter(
                    'palette required for classified (for now)',
                    param='--palette',
                    param_hint='--palette')

            renderer = palette_to_classified_renderer(
                palette,
                filenames,
                variable,
                method='equal',
                fill_value=fill,
                mask=mask)  # TODO: other methods

    if save_file:

        if os.path.exists(save_file):
            with open(save_file, 'r+') as output_file:
                data = json.loads(output_file.read())
                output_file.seek(0)
                output_file.truncate()
                data[variable] = renderer.serialize()
                output_file.write(json.dumps(data, indent=4))
        else:
            with open(save_file, 'w') as output_file:
                output_file.write(json.dumps({variable: renderer.serialize()}))

    if renderer_type == 'stretched':
        if legend_ticks is not None and not legend_breaks:
            legend_ticks = [float(v) for v in legend_ticks.split(',')]

        legend = renderer.get_legend(
            image_height=lh,
            breaks=legend_breaks,
            ticks=legend_ticks,
            max_precision=legend_precision)[0].to_image()

    elif renderer_type == 'classified':
        legend = composite_elements(renderer.get_legend())

    legend.save(
        os.path.join(output_directory, '{0}_legend.png'.format(variable)))

    with Dataset(filenames[0]) as ds:
        var_obj = ds.variables[variable]
        dimensions = var_obj.dimensions
        shape = var_obj.shape
        num_dimensions = len(shape)

        if num_dimensions == 3:
            if id_variable:
                if shape[0] != ds.variables[id_variable][:].shape[0]:
                    raise click.BadParameter(
                        'must be same dimensionality as 3rd dimension of {0}'.
                        format(variable),
                        param='--id_variable',
                        param_hint='--id_variable')
            else:
                # Guess from the 3rd dimension
                guess = dimensions[0]
                if guess in ds.variables and ds.variables[guess][:].shape[
                        0] == shape[0]:
                    id_variable = guess

        ds_crs = get_crs(ds, variable)
        if not ds_crs and is_geographic(ds, variable):
            ds_crs = 'EPSG:4326'  # Assume all geographic data is WGS84

        src_crs = CRS.from_string(ds_crs) if ds_crs else CRS(
            {'init': src_crs}) if src_crs else None

        # get transforms, assume last 2 dimensions on variable are spatial in row, col order
        y_dim, x_dim = dimensions[-2:]
        coords = SpatialCoordinateVariables.from_dataset(
            ds,
            x_dim,
            y_dim,
            projection=Proj(src_crs.to_dict()) if src_crs else None)

        if mask is not None and not mask.shape == shape[-2:]:
            # Will likely break before this if collecting statistics
            raise click.BadParameter(
                'mask variable shape does not match shape of input spatial dimensions',
                param='--mask',
                param_hint='--mask')

        flip_y = False
        reproject_kwargs = None
        if dst_crs is not None:
            if not src_crs:
                raise click.BadParameter('must provide src_crs to reproject',
                                         param='--src-crs',
                                         param_hint='--src-crs')

            dst_crs = CRS.from_string(dst_crs)

            src_height, src_width = coords.shape
            dst_transform, dst_width, dst_height = calculate_default_transform(
                src_crs,
                dst_crs,
                src_width,
                src_height,
                *coords.bbox.as_list(),
                resolution=res)

            reproject_kwargs = {
                'src_crs': src_crs,
                'src_transform': coords.affine,
                'dst_crs': dst_crs,
                'dst_transform': dst_transform,
                'resampling': getattr(Resampling, resampling),
                'dst_shape': (dst_height, dst_width)
            }

        else:
            dst_transform = coords.affine
            dst_height, dst_width = coords.shape
            dst_crs = src_crs

            if coords.y.is_ascending_order():
                # Only needed if we are not already reprojecting the data, since that will flip it automatically
                flip_y = True

        if anchors or interactive_map:
            if not (dst_crs or src_crs):
                raise click.BadParameter(
                    'must provide at least src_crs to get Leaflet anchors or interactive map',
                    param='--src-crs',
                    param_hint='--src-crs')

            leaflet_anchors = get_leaflet_anchors(
                BBox.from_affine(
                    dst_transform,
                    dst_width,
                    dst_height,
                    projection=Proj(dst_crs) if dst_crs else None))

            if anchors:
                click.echo('Anchors: {0}'.format(leaflet_anchors))

    layers = {}
    for filename in filenames:
        with Dataset(filename) as ds:
            click.echo('Processing {0}'.format(filename))

            filename_root = os.path.split(filename)[1].replace('.nc', '')

            if not variable in ds.variables:
                raise click.BadParameter(
                    'variable {0} was not found in file: {1}'.format(
                        variable, filename),
                    param='variable',
                    param_hint='VARIABLE')

            var_obj = ds.variables[variable]
            if not var_obj.dimensions == dimensions:
                raise click.ClickException(
                    'All datasets must have the same dimensions for {0}'.
                    format(variable))

            if num_dimensions == 2:
                data = var_obj[:]
                if mask is not None:
                    data = numpy.ma.masked_array(data, mask=mask)
                image_filename = os.path.join(
                    output_directory,
                    '{0}_{1}.{2}'.format(filename_root, variable, format))
                if reproject_kwargs:
                    data = warp_array(data, **reproject_kwargs)
                render_image(renderer,
                             data,
                             image_filename,
                             scale,
                             flip_y=flip_y,
                             format=format)

                local_filename = os.path.split(image_filename)[1]
                layers[os.path.splitext(local_filename)[0]] = local_filename

            elif num_dimensions == 3:
                for index in range(shape[0]):
                    id = ds.variables[id_variable][
                        index] if id_variable is not None else index
                    image_filename = os.path.join(
                        output_directory,
                        '{0}_{1}__{2}.{3}'.format(filename_root, variable, id,
                                                  format))
                    data = var_obj[index]
                    if mask is not None:
                        data = numpy.ma.masked_array(data, mask=mask)
                    if reproject_kwargs:
                        data = warp_array(data, **reproject_kwargs)
                    render_image(renderer,
                                 data,
                                 image_filename,
                                 scale,
                                 flip_y=flip_y,
                                 format=format)

                    local_filename = os.path.split(image_filename)[1]
                    layers[os.path.splitext(local_filename)
                           [0]] = local_filename

            # TODO: not tested recently.  Make sure still correct
            # else:
            #     # Assume last 2 components of shape are lat & lon, rest are iterated over
            #     id_variables = None
            #     if id_variable is not None:
            #         id_variables = id_variable.split(',')
            #         for index, name in enumerate(id_variables):
            #             if name:
            #                 assert data.shape[index] == ds.variables[name][:].shape[0]
            #
            #     ranges = []
            #     for dim in data.shape[:-2]:
            #         ranges.append(range(0, dim))
            #     for combined_index in product(*ranges):
            #         id_parts = []
            #         for index, dim_index in enumerate(combined_index):
            #             if id_variables is not None and index < len(id_variables) and id_variables[index]:
            #                 id = ds.variables[id_variables[index]][dim_index]
            #
            #                 if not isinstance(id, basestring):
            #                     if isinstance(id, Iterable):
            #                         id = '_'.join((str(i) for i in id))
            #                     else:
            #                         id = str(id)
            #
            #                 id_parts.append(id)
            #
            #             else:
            #                 id_parts.append(str(dim_index))
            #
            #         combined_id = '_'.join(id_parts)
            #         image_filename = os.path.join(output_directory, '{0}__{1}.{2}'.format(filename_root, combined_id, format))
            #         if reproject_kwargs:
            #             data = warp_array(data, **reproject_kwargs)  # NOTE: lack of index will break this
            #         render_image(renderer, data[combined_index], image_filename, scale, flip_y=flip_y, format=format)
            #
            #         local_filename = os.path.split(image_filename)[1]
            #         layers[os.path.splitext(local_filename)[0]] = local_filename

    if interactive_map:
        index_html = os.path.join(output_directory, 'index.html')
        with open(index_html, 'w') as out:
            template = Environment(
                loader=PackageLoader('trefoil.cli')).get_template('map.html')
            out.write(
                template.render(layers=json.dumps(layers),
                                bounds=str(leaflet_anchors),
                                variable=variable))

        webbrowser.open(index_html)
Пример #3
0
def map_eems(
        eems_file,
        # output_directory,
        scale,
        format,
        src_crs,
        resampling):
    """
    Render a NetCDF EEMS model to a web map.
    """

    from EEMSBasePackage import EEMSCmd, EEMSProgram


    model = EEMSProgram(eems_file)

    # For each data producing command, store the netcdf file that contains it
    file_vars = dict()
    raw_variables = set()
    for cmd in model.orderedCmds:  # This is bottom up, may want to invert
        filename = None
        variable = None
        if cmd.HasResultName():
            filename = cmd.GetParam('OutFileName')
            variable = cmd.GetResultName()
        elif cmd.IsReadCmd():
            filename = cmd.GetParam('OutFileName')
            variable = cmd.GetParam('NewFieldName')
            raw_variables.add(variable)

        if filename and variable:
            if not filename in file_vars:
                file_vars[filename] = []
            file_vars[filename].append(variable)


    filenames =file_vars.keys()
    for filename in filenames:
        if not os.path.exists(filename):
            raise click.ClickException('Could not find data file from EEMS model: {0}'.format(filename))


    dst_crs = 'EPSG:3857'

    output_directory = tempfile.mkdtemp()
    click.echo('Using temp directory: {0}'.format(output_directory))
    # if not os.path.exists(output_directory):
    #     os.makedirs(output_directory)

    # Since fuzzy renderer is hardcoded, we can output it now
    fuzzy_renderer = palette_to_stretched_renderer(DEFAULT_PALETTES['fuzzy'], '1,-1')
    fuzzy_renderer.get_legend(image_height=150)[0].to_image().save(os.path.join(output_directory, 'fuzzy_legend.png'))

    template_filename = filenames[0]
    template_var = file_vars[template_filename][0]
    with Dataset(template_filename) as ds:
        var_obj = ds.variables[template_var]
        dimensions = var_obj.dimensions
        shape = var_obj.shape
        num_dimensions = len(shape)
        if num_dimensions != 2:
            raise click.ClickException('Only 2 dimensions are allowed on data variables for now')

        ds_crs = get_crs(ds, template_var)
        if not ds_crs and is_geographic(ds, template_var):
            ds_crs = 'EPSG:4326'  # Assume all geographic data is WGS84

        src_crs = CRS.from_string(ds_crs) if ds_crs else CRS({'init': src_crs}) if src_crs else None

        # get transforms, assume last 2 dimensions on variable are spatial in row, col order
        y_dim, x_dim = dimensions[-2:]
        coords = SpatialCoordinateVariables.from_dataset(
            ds, x_dim, y_dim, projection=Proj(src_crs) if src_crs else None
        )
    #
    #     if mask is not None and not mask.shape == shape[-2:]:
    #         # Will likely break before this if collecting statistics
    #         raise click.BadParameter(
    #             'mask variable shape does not match shape of input spatial dimensions',
    #             param='--mask', param_hint='--mask'
    #         )
    #
        if not src_crs:
            raise click.BadParameter('must provide src_crs to reproject',
                                     param='--src-crs',
                                     param_hint='--src-crs')

        dst_crs = CRS.from_string(dst_crs)

        src_height, src_width = coords.shape
        dst_transform, dst_width, dst_height = calculate_default_transform(
            src_crs, dst_crs, src_width, src_height,
            *coords.bbox.as_list()
        )

        reproject_kwargs = {
            'src_crs': src_crs,
            'src_transform': coords.affine,
            'dst_crs': dst_crs,
            'dst_transform': dst_transform,
            'resampling': getattr(Resampling, resampling),
            'dst_shape': (dst_height, dst_width)
        }

        if not (dst_crs or src_crs):
            raise click.BadParameter('must provide valid src_crs to get interactive map',
                                     param='--src-crs', param_hint='--src-crs')

        leaflet_anchors = get_leaflet_anchors(BBox.from_affine(dst_transform, dst_width, dst_height,
                                                       projection=Proj(dst_crs) if dst_crs else None))


    layers = {}
    for filename in filenames:
        with Dataset(filename) as ds:
            click.echo('Processing dataset {0}'.format(filename))

            for variable in file_vars[filename]:
                click.echo('Processing variable {0}'.format(variable))

                if not variable in ds.variables:
                    raise click.ClickException('variable {0} was not found in file: {1}'.format(variable, filename))

                var_obj = ds.variables[variable]
                if not var_obj.dimensions == dimensions:
                    raise click.ClickException('All datasets must have the same dimensions for {0}'.format(variable))

                data = var_obj[:]
                # if mask is not None:
                #     data = numpy.ma.masked_array(data, mask=mask)


                if variable in raw_variables:
                    palette = DEFAULT_PALETTES['raw']
                    palette_stretch = '{0},{1}'.format(data.max(), data.min())

                    renderer = palette_to_stretched_renderer(palette, palette_stretch)
                    renderer.get_legend(image_height=150, max_precision=2)[0].to_image().save(os.path.join(output_directory, '{0}_legend.png'.format(variable)))
                else:
                    renderer = fuzzy_renderer

                image_filename = os.path.join(output_directory, '{0}.{1}'.format(variable, format))
                data = warp_array(data, **reproject_kwargs)
                render_image(renderer, data, image_filename, scale=scale, format=format)

                local_filename = os.path.split(image_filename)[1]
                layers[variable] = local_filename


    index_html = os.path.join(output_directory, 'index.html')
    with open(index_html, 'w') as out:
        template = Environment(loader=PackageLoader('trefoil.cli')).get_template('eems_map.html')
        out.write(
            template.render(
                layers=json.dumps(layers),
                bounds=str(leaflet_anchors),
                tree=[[cmd, depth] for (cmd, depth) in model.GetCmdTree()],
                raw_variables=list(raw_variables)
            )
        )

    webbrowser.open(index_html)
Пример #4
0
def map_eems(
        eems_file,
        # output_directory,
        scale,
        format,
        src_crs,
        resampling):
    """
    Render a NetCDF EEMS model to a web map.
    """

    from EEMSBasePackage import EEMSCmd, EEMSProgram

    model = EEMSProgram(eems_file)

    # For each data producing command, store the netcdf file that contains it
    file_vars = dict()
    raw_variables = set()
    for cmd in model.orderedCmds:  # This is bottom up, may want to invert
        filename = None
        variable = None
        if cmd.HasResultName():
            filename = cmd.GetParam('OutFileName')
            variable = cmd.GetResultName()
        elif cmd.IsReadCmd():
            filename = cmd.GetParam('OutFileName')
            variable = cmd.GetParam('NewFieldName')
            raw_variables.add(variable)

        if filename and variable:
            if not filename in file_vars:
                file_vars[filename] = []
            file_vars[filename].append(variable)

    filenames = file_vars.keys()
    for filename in filenames:
        if not os.path.exists(filename):
            raise click.ClickException(
                'Could not find data file from EEMS model: {0}'.format(
                    filename))

    dst_crs = 'EPSG:3857'

    output_directory = tempfile.mkdtemp()
    click.echo('Using temp directory: {0}'.format(output_directory))
    # if not os.path.exists(output_directory):
    #     os.makedirs(output_directory)

    # Since fuzzy renderer is hardcoded, we can output it now
    fuzzy_renderer = palette_to_stretched_renderer(DEFAULT_PALETTES['fuzzy'],
                                                   '1,-1')
    fuzzy_renderer.get_legend(image_height=150)[0].to_image().save(
        os.path.join(output_directory, 'fuzzy_legend.png'))

    template_filename = filenames[0]
    template_var = file_vars[template_filename][0]
    with Dataset(template_filename) as ds:
        var_obj = ds.variables[template_var]
        dimensions = var_obj.dimensions
        shape = var_obj.shape
        num_dimensions = len(shape)
        if num_dimensions != 2:
            raise click.ClickException(
                'Only 2 dimensions are allowed on data variables for now')

        ds_crs = get_crs(ds, template_var)
        if not ds_crs and is_geographic(ds, template_var):
            ds_crs = 'EPSG:4326'  # Assume all geographic data is WGS84

        src_crs = CRS.from_string(ds_crs) if ds_crs else CRS(
            {'init': src_crs}) if src_crs else None

        # get transforms, assume last 2 dimensions on variable are spatial in row, col order
        y_dim, x_dim = dimensions[-2:]
        coords = SpatialCoordinateVariables.from_dataset(
            ds, x_dim, y_dim, projection=Proj(src_crs) if src_crs else None)
        #
        #     if mask is not None and not mask.shape == shape[-2:]:
        #         # Will likely break before this if collecting statistics
        #         raise click.BadParameter(
        #             'mask variable shape does not match shape of input spatial dimensions',
        #             param='--mask', param_hint='--mask'
        #         )
        #
        if not src_crs:
            raise click.BadParameter('must provide src_crs to reproject',
                                     param='--src-crs',
                                     param_hint='--src-crs')

        dst_crs = CRS.from_string(dst_crs)

        src_height, src_width = coords.shape
        dst_transform, dst_width, dst_height = calculate_default_transform(
            src_crs, dst_crs, src_width, src_height, *coords.bbox.as_list())

        reproject_kwargs = {
            'src_crs': src_crs,
            'src_transform': coords.affine,
            'dst_crs': dst_crs,
            'dst_transform': dst_transform,
            'resampling': getattr(Resampling, resampling),
            'dst_shape': (dst_height, dst_width)
        }

        if not (dst_crs or src_crs):
            raise click.BadParameter(
                'must provide valid src_crs to get interactive map',
                param='--src-crs',
                param_hint='--src-crs')

        leaflet_anchors = get_leaflet_anchors(
            BBox.from_affine(dst_transform,
                             dst_width,
                             dst_height,
                             projection=Proj(dst_crs) if dst_crs else None))

    layers = {}
    for filename in filenames:
        with Dataset(filename) as ds:
            click.echo('Processing dataset {0}'.format(filename))

            for variable in file_vars[filename]:
                click.echo('Processing variable {0}'.format(variable))

                if not variable in ds.variables:
                    raise click.ClickException(
                        'variable {0} was not found in file: {1}'.format(
                            variable, filename))

                var_obj = ds.variables[variable]
                if not var_obj.dimensions == dimensions:
                    raise click.ClickException(
                        'All datasets must have the same dimensions for {0}'.
                        format(variable))

                data = var_obj[:]
                # if mask is not None:
                #     data = numpy.ma.masked_array(data, mask=mask)

                if variable in raw_variables:
                    palette = DEFAULT_PALETTES['raw']
                    palette_stretch = '{0},{1}'.format(data.max(), data.min())

                    renderer = palette_to_stretched_renderer(
                        palette, palette_stretch)
                    renderer.get_legend(
                        image_height=150, max_precision=2)[0].to_image().save(
                            os.path.join(output_directory,
                                         '{0}_legend.png'.format(variable)))
                else:
                    renderer = fuzzy_renderer

                image_filename = os.path.join(
                    output_directory, '{0}.{1}'.format(variable, format))
                data = warp_array(data, **reproject_kwargs)
                render_image(renderer,
                             data,
                             image_filename,
                             scale=scale,
                             format=format)

                local_filename = os.path.split(image_filename)[1]
                layers[variable] = local_filename

    index_html = os.path.join(output_directory, 'index.html')
    with open(index_html, 'w') as out:
        template = Environment(
            loader=PackageLoader('trefoil.cli')).get_template('eems_map.html')
        out.write(
            template.render(layers=json.dumps(layers),
                            bounds=str(leaflet_anchors),
                            tree=[[cmd, depth]
                                  for (cmd, depth) in model.GetCmdTree()],
                            raw_variables=list(raw_variables)))

    webbrowser.open(index_html)