Пример #1
0
    def armijo_search(self, X, U, Kproj, dX, dU):
        """
        Perform an Armijo line search from the trajectory X,U along
        the tangent trajectory dX, dU.  Returns the tuple (nX, nU,
        nCost).
        """
        cost0 = self.calc_cost(X, U)
        dcost0 = self.calc_dcost(X, U, dX, dU)

        for m in range(0, self.armijo_max_iterations):
            lam = self.armijo_beta**m
            max_cost = cost0 + self.armijo_alpha * lam * dcost0

            bX = X + lam * dX
            bU = U + lam * dU

            (result, nX, nU) = self.armijo_simulate(bX, bU, Kproj)

            if not result:
                self.monitor.armijo_simulation_failure(m, nX, nU, nX, bU)
                continue

            cost1 = self.calc_cost(nX, nU)
            self.monitor.armijo_evaluation(m, nX, nU, bX, bU, cost1, max_cost)
            if cost1 < max_cost:
                return self.armijo_search_return(nX, nU, cost1)
        else:
            self.monitor.armijo_search_failure(X, U, dX, dU, cost0, dcost0,
                                               Kproj)
            raise trep.ConvergenceError("Armijo Failed to Converge")
Пример #2
0
    def step(self,
             t2,
             u1=tuple(),
             k2=tuple(),
             max_iterations=200,
             q2_hint=None,
             lambda1_hint=None):
        """
        Step the integrator forward to time t2 .  This solves the DEL
        equation.  The result will be available in gmvi.t2, gmvi.q2,
        gmvi.p2.
        """
        u1 = np.array(u1)
        k2 = np.array(k2)
        assert u1.shape == (self.system.nu, )
        assert k2.shape == (self.nk, )

        # Advance the integrator
        self.q1 = self.q2
        self.p1 = self.p2
        self.u1 = u1
        self._q2[self.nd:] = k2
        self.t1 = self.t2
        self.t2 = t2
        if q2_hint is not None:
            self._q2[:self.nd] = q2_hint[:self.nd]
        if lambda1_hint is not None:
            self.lambda1 = lambda1_hint
        try:
            return self._solve_DEL(max_iterations)
        except ValueError:  # Catch singular derivatives.
            raise trep.ConvergenceError("Singular derivative of DEL at t=%s" %
                                        t2)
Пример #3
0
def continuous_plastic_impact(sys, surfaces, q1, dq1):
    """ 
    Fully continuous impact update. q1 = q(t-), dq1 = qdot(t-)  
    """
    p = len(surfaces)
    nd = sys.nQd

    sys.q = q1
    sys.dq = dq1

    p1 = np.array([sys.L_ddq(q1) for q1 in sys.dyn_configs])
    Dh = np.reshape(
        np.array([[c.h_dq(q) for q in sys.dyn_configs]
                  for c in sys.constraints]), (sys.nc, sys.nQd))
    Dphi = np.array([[surf.phi_dq(q) for q in sys.dyn_configs]
                     for surf in surfaces])
    Dh2 = np.append(Dh, Dphi).reshape(sys.nc + p, nd)
    Dh2T = np.transpose(Dh2)

    def func(x):
        sys.dqd = x[:nd]
        lam = x[nd:]
        p2 = np.array([sys.L_ddq(q1) for q1 in sys.dyn_configs])
        f1 = p2 - p1 - np.dot(Dh2T, lam)
        f2 = np.dot(Dh2, sys.dqd)
        return np.hstack((f1, f2))

    def fprime(x):
        sys.dqd = x[:nd]
        lam = x[nd:]
        Df11 = np.array([[sys.L_ddqddq(q1, q2) for q2 in sys.dyn_configs]
                         for q1 in sys.dyn_configs])
        Df1 = np.hstack((Df11, -Dh2T))
        Df2 = np.hstack((Dh2, np.zeros((sys.nc + p, sys.nc + p))))
        Df = np.vstack((Df1, Df2))
        return Df

    dq_guess = dq1[:nd]
    x0 = np.hstack((dq_guess, np.zeros(p + sys.nc)))

    (x, infodict, ier, mesg) = \
            scipy.optimize.fsolve(func, x0, full_output=True, fprime=fprime)

    if (ier != 1) and np.linalg.norm(func(x)) > (1e-10):
        print mesg
        raise trep.ConvergenceError("Continuous plastic impact update failed\
                                     to converge.")

    sys.dqd = x[:nd]
    lam = x[nd:]

    return sys.dqd
Пример #4
0
def solve_release_time(mvi, con):
    """ Solves for the state of the system at the time of release of constraint con. 
        This is when the continuous-time Lagrange multiplier is zero.

        This method modifies lambda1 and state 2.
    """
    nd, m = mvi.nd, mvi.nc

    # If the first state is already close enough to release, step integrator back
    # and use the state as the release state.
    if abs(mvi.lambda1c[con.index]) < LAMBDA_TOL:
        mvi.set_single_state(2, mvi.t1, mvi.q1, mvi.p1)
        mvi.lambda1 = mvi.lambda0
        return {'t': mvi.t2, 'q': mvi.q2, 'p': mvi.p2, 'lambda1': mvi.lambda1}

    set_system_state(mvi, 1)
    Dh1T = np.transpose(Dh(mvi))
    D2h1 = D2h(mvi)

    t_guess, q_guess = linear_interpolate_release(mvi, con.index)

    # No impacts at state 1 - solve normal release time problem.
    if not mvi._state1_impacts:

        x0 = np.hstack((q_guess[:nd], mvi.lambda0, t_guess))

        # The root-solving problem is to find (DEL, h(qr, tr), lambda_{cont}) = 0.
        def func(x):
            mvi.t2 = x[-1]
            mvi.lambda1 = x[nd:-1]
            mvi.q2 = np.append(x[:nd], mvi.kin_config(x[-1]))

            mvi.set_midpoint()
            f1 = mvi.p1 + D1L2(mvi) + fm2(mvi) - np.dot(Dh1T, mvi.lambda1)

            set_system_state(mvi, 2)
            f2 = h(mvi)
            f3 = mvi.system.lambda_(constraint=con)

            return np.hstack((f1, f2, f3))

        def fprime(x):
            mvi.t2 = x[-1]
            mvi.q2 = np.append(x[:nd], mvi.kin_config(x[-1]))
            mvi.lambda1 = x[(nd):(nd + m)]

            mvi.set_midpoint()
            Df11 = D2D1L2(mvi) + D2fm2(mvi)
            Df13 = D4D1L2(mvi) + D4fm2(mvi)

            set_system_state(mvi, 2)
            Df21 = Dh(mvi)
            Df23 = D2h(mvi).reshape((mvi.nc, 1))
            lam_dq = (mvi.system.lambda_dq(constraint=con) +
                      mvi.system.lambda_ddq(constraint=con) /
                      (mvi.t2 - mvi.t1))[:nd]
            lam_dt = -1.0 / (mvi.t2 - mvi.t1) * np.dot(
                mvi.system.dq[:nd],
                mvi.system.lambda_ddq(constraint=con)[:nd])

            Df1 = np.hstack((Df11, -Dh1T, Df13))
            Df2 = np.hstack((Df21, np.zeros((mvi.nc, mvi.nc)), Df23))
            Df3 = np.hstack((lam_dq, np.zeros(m), lam_dt))

            return np.vstack((Df1, Df2, Df3))

    # Impacts have occurred at state 1 - solve impact update with additional unknown
    # release time.
    else:

        impact_surfaces = mvi._state1_impacts
        p = len(impact_surfaces)

        tau = mvi.tau2  # Is set by most recent impact solver.

        x0 = np.hstack((q_guess[:nd], mvi.lambda1, t_guess,
                        np.dot(D2h1, mvi.lambda1) - tau))

        def func(x):
            mvi.t2 = x[nd + m]
            mvi.q2 = np.append(x[:nd], mvi.kin_config(mvi.t2))
            mvi.lambda1 = x[nd:(nd + m)]
            Ec = x[-1]

            mvi.set_midpoint()
            f1 = mvi.p1 + D1L2(mvi) + fm2(mvi) - np.dot(Dh1T, mvi.lambda1)
            f3 = tau + D3L2(mvi) - np.dot(D2h1, mvi.lambda1) + Ec

            set_system_state(mvi, 2)
            f2 = h(mvi)
            f4 = mvi.system.lambda_(constraint=con)

            return np.hstack((f1, f2, f3, f4))

        def fprime(x):
            mvi.t2 = x[nd + m]
            mvi.q2 = np.append(x[:nd], mvi.kin_config(mvi.t2))
            mvi.lambda1 = x[nd:(nd + m)]
            Ec = x[-1]

            mvi.set_midpoint()
            Df11 = D2D1L2(mvi) + D2fm2(mvi)
            Df13 = D4D1L2(mvi) + D4fm2(mvi)
            Df31 = D2D3L2(mvi)
            Df33 = D4D3L2(mvi)

            set_system_state(mvi, 2)
            Df21 = Dh(mvi)
            Df23 = D2h(mvi).reshape((m, 1))
            Df32 = -D2h(mvi)
            Df41 = D2LAM2(mvi, con)
            Df43 = D4LAM2(mvi, con)

            Df1 = np.hstack((Df11, -Dh1T, Df13, np.zeros((nd, 1))))
            Df2 = np.hstack((Df21, np.zeros((m, m)), Df23, np.zeros((m, 1))))
            Df3 = np.hstack((Df31, Df32, Df33, (1.0, )))
            Df4 = np.hstack((Df41, np.zeros(m), Df43, np.zeros(1)))

            return np.vstack((Df1, Df2, Df3, Df4))

    (x, infodict, ier, mesg) = scipy.optimize.fsolve(func,
                                                     x0,
                                                     full_output=True)

    if ier != 1:
        print mesg
        raise trep.ConvergenceError("Release solver failed to converge.")

    mvi.t2 = x[nd + m]
    mvi.q2 = np.append(x[:nd], mvi.kin_config(mvi.t2))
    mvi.lambda1 = x[nd:(nd + m)]
    mvi.set_midpoint()
    mvi.p2 = D2L2(mvi)

    return {'t': mvi.t2, 'q': mvi.q2, 'p': mvi.p2, 'lambda1': mvi.lambda1}
Пример #5
0
def solve_impact_time(mvi, surface):
    """ 
    Finds the time and configuration at impact across one surface.
    When passed to this function, mvi should have following states:
        1 - state just before impact
        2 - invalid configuration to be corrected
    This method modifies only state 2 and lambda1.
    """
    mvi._surface = surface
    nd, m = mvi.nd, mvi.nc

    set_system_state(mvi, 1)
    Dh1T = np.transpose(Dh(mvi))
    D2h1 = D2h(mvi)

    # Here, check if the impact occurs exactly at t1. If
    # | phi | < tolerance, set the impact state at 1. The root-solver
    # can't find this because it will cause a divide by zero error
    # (t2-t1 = 0).
    if abs(phi(mvi)) < mvi._surface.tolerance:
        mvi._s2 = (mvi.t1, mvi.q1, mvi.p1)
        mvi.lambda1 = mvi.lambda0
        return {'t': mvi.t2, 'q': mvi.q2, 'p': mvi.p2, 'lambda1': mvi.lambda1}

    t_guess, q_guess = linear_interpolate_impact(mvi)

    # First, if no impacts have occurred at state 1, we use the normal
    # VI equations plus the condition phi(qi) = 0.
    # f = [DEL(qi, ti), h(qi), phi(qi)].
    if not mvi._state1_impacts:

        x0 = np.hstack((q_guess[:nd], mvi.lambda1, t_guess))

        def func(x):
            mvi.t2 = x[-1]
            mvi.q2 = np.append(x[:nd], mvi.kin_config(x[-1]))
            mvi.lambda1 = x[nd:(nd + m)]

            mvi.set_midpoint()
            f1 = mvi.p1 + D1L2(mvi) + fm2(mvi) - np.dot(Dh1T, mvi.lambda1)

            set_system_state(mvi, 2)
            f2 = h(mvi)
            f3 = phi(mvi)

            return np.hstack((f1, f2, f3))

        def fprime(x):
            mvi.t2 = x[-1]
            mvi.q2 = np.append(x[:nd], mvi.kin_config(x[-1]))
            mvi.lambda1 = x[(nd):(nd + m)]

            mvi.set_midpoint()
            Df11 = D2D1L2(mvi) + D2fm2(mvi)
            Df13 = D4D1L2(mvi) + D4fm2(mvi)

            set_system_state(mvi, 2)
            Df21 = Dh(mvi)
            Df31 = Dphi(mvi)
            Df23 = D2h(mvi).reshape((mvi.nc, 1))

            Df1 = np.hstack((Df11, -Dh1T, Df13))
            Df2 = np.hstack((Df21, np.zeros((m, m)), Df23))
            Df3 = np.hstack((Df31, np.zeros(m + 1)))

            return np.vstack((Df1, Df2, Df3))

    # Otherwise, we need to use the modified impact time solver that
    # also applies the plastic impact map. Keep in mind that here the
    # impact surfaces have already been added to the system, i.e., they
    # are included in h. f = [DEL(qi, ti), h(qi), IMPACT_MAP(qi, ti)]
    else:
        impact_surfaces = mvi._state1_impacts
        p = len(impact_surfaces)
        tau = mvi._tau1

        x0 = np.hstack((q_guess[:nd], mvi.lambda1, t_guess,
                        np.dot(D2h1, mvi.lambda1) - tau))

        def func(x):
            mvi.t2 = x[nd + m]
            mvi.q2 = np.append(x[:nd], mvi.kin_config(mvi.t2))
            mvi.lambda1 = x[nd:(nd + m)]
            Ec = x[-1]

            mvi.set_midpoint()
            f1 = mvi.p1 + D1L2(mvi) + fm2(mvi) - np.dot(Dh1T, mvi.lambda1)
            f3 = tau + D3L2(mvi) - np.dot(D2h1, mvi.lambda1) + Ec

            set_system_state(mvi, 2)
            f2 = h(mvi)
            f4 = phi(mvi)

            return np.hstack((f1, f2, f3, f4))

        def fprime(x):
            mvi.t2 = x[nd + m]
            mvi.q2 = np.append(x[:nd], mvi.kin_config(mvi.t2))
            mvi.lambda1 = x[nd:(nd + m)]
            Ec = x[-1]

            mvi.set_midpoint()
            Df11 = D2D1L2(mvi) + D2fm2(mvi)
            Df13 = D4D1L2(mvi) + D4fm2(mvi)
            Df31 = D2D3L2(mvi)
            Df33 = D4D3L2(mvi)

            set_system_state(mvi, 2)
            Df21 = Dh(mvi)
            Df23 = D2h(mvi).reshape((m, 1))
            Df32 = -D2h(mvi)
            Df41 = Dphi(mvi)

            Df1 = np.hstack((Df11, -Dh1T, Df13, np.zeros((nd, 1))))
            Df2 = np.hstack((Df21, np.zeros((m, m)), Df23, np.zeros((m, 1))))
            Df3 = np.hstack((Df31, Df32, Df33, (1.0, )))
            Df4 = np.hstack((Df41, np.zeros(m + 2)))

            return np.vstack((Df1, Df2, Df3, Df4))

    # Call the root-solver to find the time of impact.
    try:
        (x, infodict, ier, mesg) = \
                scipy.optimize.fsolve(func, x0, full_output=True, fprime=fprime)
    except ZeroDivisionError:
        raise Exception("Divide by zero in impact time solver.")

    if ier != 1:
        print mesg
        raise trep.ConvergenceError("Find impact failed to converge.")

    mvi.t2 = x[nd + m]
    mvi.q2 = np.append(x[:nd], mvi.kin_config(mvi.t2))
    mvi.lambda1 = x[nd:(nd + m)]
    mvi.set_midpoint()
    mvi.p2 = D2L2(mvi)

    return {'t': mvi.t2, 'q': mvi.q2, 'p': mvi.p2, 'lambda1': mvi.lambda1}
Пример #6
0
def discrete_plastic_impact(mvi, impact_surfaces=[]):
    """ 
    Finds the configuration after impact.
    when passed to this function, mvi should have following states
        1 - state just before impact
        2 - impact state
    plastic_impact updates so that state2 is post-impact, state1 is impact     
    """
    p = len(impact_surfaces)
    nd, m = mvi.nd, mvi.nc

    mvi._s2 = (mvi.t2, mvi.q2, mvi.p2)
    mvi.lambda0 = mvi.lambda1
    tau = mvi._tau1

    # It is always possible that an impact happens very close to the
    # time step t2. If this is the case, then we need to take a whole new
    # step to ensure the impact map is computed. This step is assumed to
    # be the same size as the previous one. Not ideal, but definitely
    # needed.
    if abs(mvi.t2 - mvi.t_end) < TIME_TOL:
        mvi.t_end = mvi.t_start + 2 * mvi.current_dt
    mvi.t2 = mvi.t_end

    set_system_state(mvi, 1)
    Dh1T = np.transpose(Dh(mvi))
    D2h1 = D2h(mvi)

    # If there are impact surfaces, apply normal plastic impact update.
    if p != 0:

        Dphi1 = Dphi(mvi, surfaces=impact_surfaces)
        x0 = np.hstack((mvi.q2[:nd], mvi.lambda1, np.dot(Dphi1, mvi.p1),
                        np.dot(D2h1, mvi.lambda1) - tau))

        def func(x):
            mvi.q2 = np.append(x[:nd], mvi.kin_config(mvi.t2))
            mvi.lambda1 = x[nd:(nd + m)]
            lambda_c = x[(nd + m):-1]
            Ec = x[-1]

            set_system_state(mvi, 2)
            f2 = h(mvi)
            f4 = phi(mvi, surfaces=impact_surfaces)

            mvi.set_midpoint()
            f1 = (mvi.p1 + D1L2(mvi) + fm2(mvi) - np.dot(Dh1T, mvi.lambda1) -
                  np.dot(np.transpose(Dphi1), lambda_c))
            f3 = tau + D3L2(mvi) - np.dot(D2h1, mvi.lambda1) + Ec

            return np.hstack((f1, f2, f3, f4))

        def fprime(x):
            mvi.q2 = np.append(x[:nd], mvi.kin_config(mvi.t2))
            mvi.lambda1 = x[nd:nd + m]
            lambda_c = x[(nd + m):-1]
            Ec = x[-1]

            mvi.set_midpoint()
            Df11 = D2D1L2(mvi) + D2fm2(mvi)
            Df31 = D2D3L2(mvi)

            set_system_state(mvi, 2)
            Df21 = Dh(mvi)
            Df41 = Dphi(mvi, surfaces=impact_surfaces)
            Df32 = -D2h(mvi)

            Df1 = np.column_stack(
                (Df11, -Dh1T, -np.transpose(Dphi1), np.zeros((nd, 1))))
            Df2 = np.hstack((Df21, np.zeros((mvi.nc, mvi.nc + p + 1))))
            Df3 = np.hstack((Df31, Df32, np.zeros(p), (1.0, )))
            Df4 = np.hstack((Df41, np.zeros((p, mvi.nc + p + 1))))

            return np.vstack((Df1, Df2, Df3, Df4))

    # Because of multiple events, it is possible we need to solve the
    # impact update after the constraints have already been added to the
    # system. This is the same problem, except lambda_c is a part of lambda
    # already.
    else:
        x0 = np.hstack(
            (mvi.q2[:nd], mvi.lambda1, np.dot(D2h1, mvi.lambda1) - tau))

        def func(x):
            mvi.q2 = np.append(x[:nd], mvi.kin_config(mvi.t2))
            mvi.lambda1 = x[nd:(nd + m)]
            Ec = x[-1]

            set_system_state(mvi, 2)
            f2 = h(mvi)

            mvi.set_midpoint()
            f1 = mvi.p1 + D1L2(mvi) + fm2(mvi) - np.dot(Dh1T, mvi.lambda1)
            f3 = tau + D3L2(mvi) - np.dot(D2h1, mvi.lambda1) + Ec

            return np.hstack((f1, f2, f3))

        def fprime(x):
            mvi.q2 = np.append(x[:nd], mvi.kin_config(mvi.t2))
            mvi.lambda1 = x[nd:nd + m]
            Ec = x[-1]

            mvi.set_midpoint()
            Df11 = D2D1L2(mvi) + D2fm2(mvi)
            Df31 = D2D3L2(mvi)

            set_system_state(mvi, 2)
            Df21 = Dh(mvi)
            Df32 = -D2h(mvi)

            Df1 = np.column_stack((Df11, -Dh1T, np.zeros((nd, 1))))
            Df2 = np.hstack((Df21, np.zeros((m, m + 1))))
            Df3 = np.hstack((Df31, Df32, (1.0, )))

            return np.vstack((Df1, Df2, Df3))


    (x, infodict, ier, mesg) = \
            scipy.optimize.fsolve(func, x0, full_output=True, fprime=fprime)

    if (ier != 1):
        if np.linalg.norm(func(x)) < mvi.tolerance:
            pass
        else:
            print mesg
            raise trep.ConvergenceError("Discrete plastic impact update failed\
                                         to converge.")

    mvi.q2 = np.append(x[:nd], mvi.kin_config(mvi.t2))
    mvi.lambda1 = x[nd:(nd + m)]
    mvi.set_midpoint()
    mvi.p2 = D2L2(mvi)
    mvi.tau2 = D4L2(mvi)

    return {
        't': mvi.t2,
        'q': mvi.q2,
        'lambda1': mvi.lambda1,
        'lambdac': x[(nd + m):-1],
        'Ec': x[-1]
    }