def __init__(self, config, data_seq_list, opt_method): self.config = config self.data_seq_list = data_seq_list self.opt_method = opt_method if opt_method.lower() == 'adam': self.config.pre_compute_data_var = False # if wb.is_linux(): # self.feats = feat.FastFeats(self.config.feat_dict) # else: self.feats = feat.Feats(self.config.feat_dict) self.update_op = None self.data_exp = None self.data_var = None
def __init__(self, config, data, opt_method): self.config = config self.data = data self.opt_method = opt_method if opt_method.lower() == 'adam': self.config.pre_compute_data_var = False # self.len_factor = self.config.pi_true / self.config.pi_0 wftype, cftype = feat.separate_type(feat.read_feattype_file(self.config.feat_type_file)) if self.data.word_to_class is not None: wftype.update(cftype) # if wb.is_linux(): # self.feat = feat.FastFeats(wftype) # else: self.feat = feat.Feats(wftype) self.update_op = None self.data_exp = None self.data_var = None
def __init__(self, config, data_seq_list, opt_method): self.config = config self.data_seq_list = data_seq_list self.opt_method = opt_method # tag features # if wb.is_linux(): # self.feats = feat.FastFeats(self.config.feat_dict) # else: self.feats = feat.Feats(self.config.feat_dict) # update self.update_op = None # save the trans_matrix self.trans_matrix = np.zeros( [self.config.tag_size**(self.get_order() - 1)] * 2) self.trans_matrix_tail = np.zeros_like( self.trans_matrix) # the trans_matrix at the last position self.need_update_trans_matrix = True # if true, then recompute the trans_matrix # used to compute the get_exp() self.tag_map_ids = None self.tag_map_ids_extra = None
def __str__(self): max_order = feat.Feats(self.feat_dict).get_order() return 'mix{}g'.format(max_order)