Пример #1
0
def apply_batch(operator, testset, folder_prefix, procs=None):
    '''
    Applies an operator in all images of a given testset. The
    images are saved in folder_prefix with the same name as the
    groundtruth images.
    '''

    for (i, o, m) in testset:
        inp = p.load_image(i)
        msk = p.load_mask_image(m, inp.shape, operator.window)
        o_name = os.path.split(o)[1]
        res = operator.apply(inp, msk)
        p.save_image(res, '%s/%s' % (folder_prefix, o_name))
Пример #2
0
    for i in range(5):
        win = w.random_win(domain, 40, True)
        op = trios.WOperator(win, SKClassifier(DecisionTreeClassifier()),
                             RAWFeatureExtractor)
        print('Training...', i)
        op.train(images)
        ops.append(op)

    comb = CombinationPattern(*ops)
    wop2 = trios.WOperator(comb.window,
                           SKClassifier(DecisionTreeClassifier(),
                                        ordered=True),
                           comb,
                           batch=True)
    print('Training 2nd level')
    wop2.train(images2)

    # save trained operator
    p.save_gzip(wop2, 'dt-tl-jung.op')
    # and load it later
    wop2 = p.load_gzip('dt-tl-jung.op')

    # load image and apply operator. Second argument is application mask.
    img = p.load_image('images/jung-1a.png')
    print('Applying to image jung-1a.png')
    out = wop2.apply(img, img)
    p.save_image(out, 'out-isi-jung-1a.png')

    print('Accuracy', wop2.eval(test, procs=1))

    print(wop2.cite_me())
Пример #3
0
from trios.classifiers import SKClassifier
from sklearn.tree import DecisionTreeClassifier
from trios.feature_extractors import Aperture
import trios
import numpy as np

import trios.shortcuts.persistence as p

if __name__ == '__main__':
    images = trios.Imageset([('images_gl/einstein-noise.png',
                              'images_gl/einstein-original.png', None)])
    win = np.ones((7, 7), np.uint8)

    # use Decision Tree Classifier and raw pixels as features.
    ap = Aperture(win, 10, mul=0.5)
    op = trios.WOperator(win, SKClassifier(DecisionTreeClassifier()), ap)
    print('Training...')
    op.train(images)

    # save trained operator
    p.save_gzip(op, 'ap-einstein.op')
    # and load it later
    op2 = p.load_gzip('ap-einstein.op')

    # load image and apply operator. Second argument is application mask.
    img = p.load_image('images_gl/einstein-noise.png')
    print('Applying to image images_gl/einstein-noise.png')
    out = op.apply(img, img)
    p.save_image(out, 'out-ap-einstein.png')
Пример #4
0
    images = trios.Imageset.read('images/level1.set')
    win = np.ones((5, 5), np.uint8)

    # use Decision Tree Classifier and raw pixels as features.
    op = trios.WOperator(win, SKClassifier(DecisionTreeClassifier()),
                         RAWFeatureExtractor)
    print('Training...')
    op.train(images)

    # save trained operator
    p.save_gzip(op, 'dt-jung.op')
    # and load it later
    op2 = p.load_gzip('dt-jung.op')

    # load image and apply operator. Second argument is application mask.
    img = p.load_image('images/jung-1a.png')
    print('Applying to image jung-1a.png')
    out = op.apply(img, img)
    p.save_image(out, 'out-dt-jung-1a.png')

    test = trios.Imageset.read('images/test.set')
    print('Accuracy', op.eval(test, procs=1, per_image=True))
    print('Accuracy', op.eval(test, procs=2, per_image=True))
    print('Accuracy', op.eval(test, procs=8, per_image=True))

    op.extractor.batch_size = 100
    out_5000 = op.apply(img, img)
    assert np.sum(out_5000 != out) == 0
    p.save_image(out, 'out-dt-jung-1a-2.png')

    #print(op2.cite_me())
Пример #5
0
import trios.shortcuts.persistence as p
import trios
import numpy as np

if __name__ == '__main__':
    jung_op = p.load_gzip('trained-jung.op.gz')

    input13 = p.load_image('jung-images/jung-15b.png')
    # The jung operator uses the input image as mask. Thus, it erases 
    # all pixels that do not belong to an s.
    result = jung_op.apply(input13, input13) 
    p.save_image(result, 'jung13-output.png')

    testset = trios.Imageset.read('jung-images/test.set')
    print('Error:', jung_op.eval(testset))

Пример #6
0
from trios.classifiers import SKClassifier
from sklearn.tree import DecisionTreeClassifier
from trios.contrib.features.lbp import LBPExtractor
import trios
import numpy as np
import trios.shortcuts.persistence as p

if __name__ == '__main__':
    images = trios.Imageset.read('images/training.set')
    win = np.ones((5, 5), np.uint8)

    op = trios.WOperator(win, SKClassifier(DecisionTreeClassifier()),
                         LBPExtractor)
    op.train(images)

    img = p.load_image('images/jung-1a.png')
    lbp = op.apply(img, img)
    p.save_image(lbp, 'lbp-out.png')

    test = trios.Imageset.read('images/test.set')
    print('Accuracy', op.eval(test, procs=7))
Пример #7
0
import pyximport
pyximport.install()

from trios.classifiers import SKClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn import svm
from trios.contrib.features.sobel import SobelExtractor
import trios
import numpy as np
import trios.shortcuts.persistence as p

if __name__ == '__main__':
    images = trios.Imageset.read('images/training.set')
    win = np.ones((5, 5), np.uint8)

    sobel = SobelExtractor(window=win, batch_size=1000)
    op = trios.WOperator(win, SKClassifier(svm.LinearSVC()), sobel)
    op.train(images)

    img= p.load_image('images/jung-1a.png')
    lbp = op.apply(img, img)
    p.save_image(lbp, 'sobel-out.png')

    test = trios.Imageset.read('images/test.set')
    print('Accuracy', op.eval(test, procs=7))