Пример #1
0
Файл: bse.py Проект: TRIQS/tprf
def fixed_fermionic_window_python_wnk(chi_wnk, nwf):
    r""" Helper routine to reduce the number of fermionic Matsubara 
    frequencies :math:`\nu` in a two frequency and one momenta dependent
    generalized susceptibility :math:`\chi_{abcd}(\omega, \nu, \mathbf{k})`.

    Parameters
    ----------

    chi_wnk : two frequency and one momenta dependent generalized 
              susceptibility :math:`\chi_{abcd}(\omega, \nu, \mathbf{k})`.
    nwf : number of fermionic frequencies to keep.

    Returns
    -------

    chi_wnk_out : Susceptibility with reduced number of fermionic Matsubara
                  frequencies.
    """

    g2 = chi_wnk
    wmesh, nmesh, kmesh = g2.mesh.components

    beta = g2.mesh.components[0].beta
    nmesh_small = MeshImFreq(beta=beta, S='Fermion', n_max=nwf)

    chi_wnk_out = Gf(mesh=MeshProduct(wmesh, nmesh_small, kmesh),
                     target_shape=g2.target_shape)

    n = g2.data.shape[1]
    s = n // 2 - nwf
    e = n // 2 + nwf

    chi_wnk_out.data[:] = g2.data[:, s:e, :]

    return chi_wnk_out
Пример #2
0
def test_add_fake_bosonic_mesh_with_gf_nk(bzmesh):
    nmesh = MeshImFreq(beta=1, S="Fermion", n_max=1)

    gf_nk = Gf(mesh=MeshProduct(nmesh, bzmesh), target_shape=(2, 2))
    gf_wnk = add_fake_bosonic_mesh(gf_nk)

    np.testing.assert_allclose(gf_nk.data, gf_wnk[Idx(0), :, :].data)
Пример #3
0
def create_random_gamma_wnn(p):
    wmesh_gamma = MeshImFreq(beta=p.beta, S="Boson", n_max=p.nw_gamma)
    nmesh_gamma = MeshImFreq(beta=p.beta, S="Fermion", n_max=p.nwf)

    gamma_wnn = Gf(
        mesh=MeshProduct(wmesh_gamma, nmesh_gamma, nmesh_gamma),
        target_shape=2 * g0_wk.target_shape,
    )

    np.random.seed(p.seed)
    gamma_wnn.data[:] = np.random.rand(*gamma_wnn.data.shape)

    return gamma_wnn
Пример #4
0
def add_fake_bosonic_mesh(gf, beta=None):
    """ Put a one value bosonic mesh as the first mesh argument of a 
    Green's function object.

    Parameters
    ----------
    gf : Gf,
         Green's function on some arbitrary mesh. If 'beta' is not given
         one mesh needs to be a 'MeshImFreq' to obtain a beta'
    beta : float, optional
           The inverse temperature used for the fake bosonic mesh.

    Returns
    -------
    gf_w : Gf,
           Green's function with an additional one value bosonic mesh
           on its first position.
    """
    mesh = gf.mesh
    if isinstance(mesh, MeshProduct):
        meshes = mesh.components
    else:
        meshes = (mesh, )

    # If beta is not given access it from a 'MeshImFreq' of the 'Gf'
    if not beta:
        betas = [mesh.beta for mesh in meshes if hasattr(mesh, "beta")]
        if len(betas) == 0:
            raise ValueError(
                "No 'beta' was given and the Green's function does not contain"
                " a 'MeshImFreq'")
        beta = betas[0]

    wmesh = MeshImFreq(beta, 'Boson', 1)
    mesh = (wmesh, ) + meshes
    mesh = MeshProduct(*mesh)

    gf_w = Gf(mesh=mesh, target_shape=gf.target_shape)
    gf_w.data[0, ...] = gf.data

    return gf_w
Пример #5
0
def G2_loc_fixed_fermionic_window_python(g2, nwf):
    """ Limit the last two fermionic freqiencies of a three
    frequency Green's function object :math:`G(\omega, \nu, \nu')`
    to ``nwf``. """

    nw = (g2.data.shape[0] + 1) // 2
    n = g2.data.shape[1]
    beta = g2.mesh.components[0].beta

    assert (n // 2 >= nwf)

    mesh_iw = MeshImFreq(beta=beta, S='Boson', n_max=nw)
    mesh_inu = MeshImFreq(beta=beta, S='Fermion', n_max=nwf)
    mesh_prod = MeshProduct(mesh_iw, mesh_inu, mesh_inu)

    g2_out = Gf(mesh=mesh_prod, target_shape=g2.target_shape)

    s = n // 2 - nwf
    e = n // 2 + nwf

    g2_out.data[:] = g2.data[:, s:e, s:e]
    return g2_out
Пример #6
0
                     statistic='Fermion', n_points=50,
                     target_shape=(1,1))

    g_iwn = GfImFreq(name='$g$', beta=beta,
                     statistic='Fermion', n_points=10,
                     target_shape=(1,1))

    ed.set_g2_tau(g_tau[0,0], c(up,0), c_dag(up,0))
    ed.set_g2_iwn(g_iwn[0,0], c(up,0), c_dag(up,0))

    # ------------------------------------------------------------------
    # -- Two particle Green's functions

    ntau = 20
    imtime = MeshImTime(beta, 'Fermion', ntau)
    prodmesh = MeshProduct(imtime, imtime, imtime)

    g40_tau = Gf(name='g40_tau', mesh=prodmesh, target_shape=[1, 1, 1, 1])
    g4_tau = Gf(name='g4_tau', mesh=prodmesh, target_shape=[1, 1, 1, 1])

    ed.set_g40_tau(g40_tau, g_tau[0,0])
    ed.set_g4_tau(g4_tau[0,0,0,0], c(up,0), c_dag(up,0), c(up,0), c_dag(up,0))

    # ------------------------------------------------------------------
    # -- Two particle Green's functions (equal times)

    prodmesh = MeshProduct(imtime, imtime)
    g3pp_tau = Gf(name='g4_tau', mesh=prodmesh, target_shape=[1, 1, 1, 1])
    ed.set_g3_tau(g3pp_tau[0,0,0,0], c(up,0), c_dag(up,0), c(up,0)*c_dag(up,0))

    # ------------------------------------------------------------------
Пример #7
0
def test_two_particle_greens_function():

    # ------------------------------------------------------------------
    # -- Hubbard atom with two bath sites, Hamiltonian

    beta = 2.0
    V1 = 2.0
    V2 = 5.0
    epsilon1 = 0.00
    epsilon2 = 4.00
    mu = 2.0
    U = 0.0

    up, do = 0, 1
    docc = c_dag(up, 0) * c(up, 0) * c_dag(do, 0) * c(do, 0)
    nA = c_dag(up, 0) * c(up, 0) + c_dag(do, 0) * c(do, 0)
    nB = c_dag(up, 1) * c(up, 1) + c_dag(do, 1) * c(do, 1)
    nC = c_dag(up, 2) * c(up, 2) + c_dag(do, 2) * c(do, 2)

    H = -mu * nA + epsilon1 * nB + epsilon2 * nC + U * docc + \
        V1 * (c_dag(up, 0) * c(up, 1) + c_dag(up, 1) * c(up, 0) +
              c_dag(do, 0) * c(do, 1) + c_dag(do, 1) * c(do, 0)) + \
        V2 * (c_dag(up, 0) * c(up, 2) + c_dag(up, 2) * c(up, 0) +
              c_dag(do, 0) * c(do, 2) + c_dag(do, 2) * c(do, 0))

    # ------------------------------------------------------------------
    # -- Exact diagonalization

    fundamental_operators = [
        c(up, 0), c(do, 0),
        c(up, 1), c(do, 1),
        c(up, 2), c(do, 2)
    ]

    ed = TriqsExactDiagonalization(H, fundamental_operators, beta)

    # ------------------------------------------------------------------
    # -- single particle Green's functions

    g_tau = GfImTime(name=r'$g$',
                     beta=beta,
                     statistic='Fermion',
                     n_points=100,
                     target_shape=(1, 1))

    ed.set_g2_tau(g_tau[0, 0], c(up, 0), c_dag(up, 0))

    # ------------------------------------------------------------------
    # -- Two particle Green's functions

    ntau = 10
    imtime = MeshImTime(beta, 'Fermion', ntau)
    prodmesh = MeshProduct(imtime, imtime, imtime)

    g40_tau = Gf(name='g40_tau', mesh=prodmesh, target_shape=(1, 1, 1, 1))
    g4_tau = Gf(name='g4_tau', mesh=prodmesh, target_shape=(1, 1, 1, 1))

    ed.set_g40_tau_matrix(g40_tau, g_tau)
    ed.set_g4_tau(g4_tau[0, 0, 0, 0], c(up, 0), c_dag(up, 0), c(up, 0),
                  c_dag(up, 0))

    # ------------------------------------------------------------------
    # -- compare

    zero_outer_planes_and_equal_times(g4_tau)
    zero_outer_planes_and_equal_times(g40_tau)
    np.testing.assert_array_almost_equal(g4_tau.data, g40_tau.data)
Пример #8
0
from triqs.lattice import BravaisLattice, BrillouinZone
from triqs.gf import Gf, MeshProduct, MeshBrillouinZone, MeshImFreq

n_k = 32
n_w = 20
t=1
beta = 10.

BL = BravaisLattice([(1, 0, 0), (0, 1, 0)]) # Two unit vectors in R3
BZ = BrillouinZone(BL)

kmesh = MeshBrillouinZone(BZ, n_k=n_k)
wmesh = MeshImFreq(beta=beta, S='Fermion', n_max=n_w)

g0 = Gf(mesh=MeshProduct(wmesh, kmesh), target_shape=[])  # g0(k,omega), scalar valued

def eps(k):
    return -2 * t* (np.cos(k.value[0]) + np.cos(k.value[1]))

# NB : loop is a bit slow in python ...
for k in g0.mesh[1]:
    for w in g0.mesh[0]:
        g0[w,k] = 1/(w - eps(k))

#name = "gd_k"
#G_k = HDFArchive(name+".h5",'r')[name]


spin = 'up'
Пример #9
0
h_0_mat = TBL._hop[(0,0,0)][0:n_orb,0:n_orb]
h_0 = sum(c_dag_vec[s] * h_0_mat * c_vec[s] for s in spin_names)[0,0]

Umat, Upmat = U_matrix_kanamori(n_orb, U_int=U, J_hund=J)
h_int = h_int_kanamori(spin_names, orb_names, Umat, Upmat, J, off_diag=True)

h_imp = h_0 + h_int


# ==== Non-Interacting Impurity Green function  ====
gf_struct = [(s,orb_names) for s in spin_names]

iw_mesh = MeshImFreq(beta, 'Fermion', n_iw)
k_mesh = MeshBrillouinZone(TBL.bz, n_k)
k_iw_mesh = MeshProduct(k_mesh, iw_mesh)

G0_k_iw = BlockGf(mesh=k_iw_mesh, gf_struct=gf_struct)
G0_iw = BlockGf(mesh=iw_mesh, gf_struct=gf_struct)

iw_vec = array([iw.value * np.eye(n_orb) for iw in iw_mesh])
k_vec = array([k.value for k in k_mesh])
e_k_vec = TBL.hopping(k_vec.T / 2. / pi).transpose(2, 0, 1)[::,0:n_orb,0:n_orb]
mu_mat = mu * np.eye(n_orb)

for s in spin_names:
    G0_k_iw[s].data[:] = linalg.inv(iw_vec[None,...] + mu_mat[None,None,...] - e_k_vec[::,None,...])
    G0_iw[s].data[:] = np.sum(G0_k_iw[s].data[:], axis=0) / len(k_mesh)


# ==== Hybridization Function ====
Пример #10
0
def make_calc():

    # ------------------------------------------------------------------
    # -- Read precomputed ED data

    filename = "data_pomerol.tar.gz"
    p = read_TarGZ_HDFArchive(filename)

    # ------------------------------------------------------------------
    # -- RPA tensor

    from triqs_tprf.rpa_tensor import get_rpa_tensor
    from triqs_tprf.rpa_tensor import fundamental_operators_from_gf_struct

    fundamental_operators = fundamental_operators_from_gf_struct(p.gf_struct)
    p.U_abcd = get_rpa_tensor(p.H_int, fundamental_operators)

    # ------------------------------------------------------------------
    # -- Generalized PH susceptibility

    loc_bse = ParameterCollection()

    loc_bse.chi_wnn = chi_from_gg2_PH(p.G_iw, p.G2_iw_ph)
    loc_bse.chi0_wnn = chi0_from_gg2_PH(p.G_iw, p.G2_iw_ph)

    loc_bse.gamma_wnn = inverse_PH(loc_bse.chi0_wnn) - inverse_PH(
        loc_bse.chi_wnn)
    loc_bse.chi_wnn_ref = inverse_PH(
        inverse_PH(loc_bse.chi0_wnn) - loc_bse.gamma_wnn)

    np.testing.assert_array_almost_equal(loc_bse.chi_wnn.data,
                                         loc_bse.chi_wnn_ref.data)

    loc_bse.chi0_w = trace_nn(loc_bse.chi0_wnn)
    loc_bse.chi_w = trace_nn(loc_bse.chi_wnn)

    # ------------------------------------------------------------------
    # -- RPA, using BSE inverses and constant Gamma

    loc_rpa = ParameterCollection()
    loc_rpa.U_abcd = p.U_abcd

    # -- Build constant gamma
    loc_rpa.gamma_wnn = loc_bse.gamma_wnn.copy()
    loc_rpa.gamma_wnn.data[:] = loc_rpa.U_abcd[None, None, None, ...]
    # Nb! In the three frequency form $\Gamma \propto U/\beta^2$
    loc_rpa.gamma_wnn.data[:] /= p.beta**2

    loc_rpa.chi0_wnn = loc_bse.chi0_wnn
    loc_rpa.chi0_w = loc_bse.chi0_w

    # -- Solve RPA
    loc_rpa.chi_wnn = inverse_PH(
        inverse_PH(loc_rpa.chi0_wnn) - loc_rpa.gamma_wnn)
    loc_rpa.chi_w = trace_nn(loc_rpa.chi_wnn)

    # ------------------------------------------------------------------
    # -- Bubble RPA on lattice

    lat_rpa = ParameterCollection()

    # -- Setup dummy lattice Green's function equal to local Green's function

    bz = BrillouinZone(
        BravaisLattice(units=np.eye(3), orbital_positions=[(0, 0, 0)]))
    periodization_matrix = np.diag(np.array(list([1] * 3), dtype=np.int32))
    kmesh = MeshBrZone(bz, periodization_matrix)
    wmesh = MeshImFreq(beta=p.beta, S='Fermion', n_max=p.nwf_gf)

    lat_rpa.g_wk = Gf(mesh=MeshProduct(wmesh, kmesh),
                      target_shape=p.G_iw.target_shape)
    lat_rpa.g_wk[:, Idx(0, 0, 0)] = p.G_iw

    # -- chi0_wk bubble and chi_wk_rpa bubble RPA

    from triqs_tprf.lattice_utils import imtime_bubble_chi0_wk
    lat_rpa.chi0_wk = imtime_bubble_chi0_wk(lat_rpa.g_wk, nw=1)

    from triqs_tprf.lattice import solve_rpa_PH
    lat_rpa.chi_wk = solve_rpa_PH(lat_rpa.chi0_wk, p.U_abcd)

    lat_rpa.chi0_w = lat_rpa.chi0_wk[:, Idx(0, 0, 0)]
    lat_rpa.chi_w = lat_rpa.chi_wk[:, Idx(0, 0, 0)]

    print('--> cf Tr[chi0] and chi0_wk')
    print(loc_rpa.chi0_w.data.reshape((4, 4)).real)
    print(lat_rpa.chi0_w.data.reshape((4, 4)).real)

    np.testing.assert_array_almost_equal(loc_rpa.chi0_w.data,
                                         lat_rpa.chi0_w.data,
                                         decimal=2)

    print('ok!')

    print('--> cf Tr[chi_rpa] and chi_wk_rpa')
    print(loc_rpa.chi_w.data.reshape((4, 4)).real)
    print(lat_rpa.chi_w.data.reshape((4, 4)).real)

    np.testing.assert_array_almost_equal(loc_rpa.chi_w.data,
                                         lat_rpa.chi_w.data,
                                         decimal=2)

    print('ok!')

    # ------------------------------------------------------------------
    # -- Lattice BSE

    lat_bse = ParameterCollection()

    lat_bse.g_wk = lat_rpa.g_wk

    from triqs_tprf.lattice import fourier_wk_to_wr
    lat_bse.g_wr = fourier_wk_to_wr(lat_bse.g_wk)

    from triqs_tprf.lattice import chi0r_from_gr_PH
    lat_bse.chi0_wnr = chi0r_from_gr_PH(nw=1, nnu=p.nwf, gr=lat_bse.g_wr)

    from triqs_tprf.lattice import chi0q_from_chi0r
    lat_bse.chi0_wnk = chi0q_from_chi0r(lat_bse.chi0_wnr)

    # -- Lattice BSE calc
    from triqs_tprf.lattice import chiq_from_chi0q_and_gamma_PH
    lat_bse.chi_kwnn = chiq_from_chi0q_and_gamma_PH(lat_bse.chi0_wnk,
                                                    loc_bse.gamma_wnn)

    # -- Trace results
    from triqs_tprf.lattice import chi0q_sum_nu_tail_corr_PH
    from triqs_tprf.lattice import chi0q_sum_nu
    lat_bse.chi0_wk_tail_corr = chi0q_sum_nu_tail_corr_PH(lat_bse.chi0_wnk)
    lat_bse.chi0_wk = chi0q_sum_nu(lat_bse.chi0_wnk)

    from triqs_tprf.lattice import chiq_sum_nu, chiq_sum_nu_q
    lat_bse.chi_kw = chiq_sum_nu(lat_bse.chi_kwnn)

    lat_bse.chi0_w_tail_corr = lat_bse.chi0_wk_tail_corr[:, Idx(0, 0, 0)]
    lat_bse.chi0_w = lat_bse.chi0_wk[:, Idx(0, 0, 0)]
    lat_bse.chi_w = lat_bse.chi_kw[Idx(0, 0, 0), :]

    print('--> cf Tr[chi0_wnk] and chi0_wk')
    print(lat_bse.chi0_w_tail_corr.data.reshape((4, 4)).real)
    print(lat_bse.chi0_w.data.reshape((4, 4)).real)
    print(lat_rpa.chi0_w.data.reshape((4, 4)).real)

    np.testing.assert_array_almost_equal(lat_bse.chi0_w_tail_corr.data,
                                         lat_rpa.chi0_w.data)

    np.testing.assert_array_almost_equal(lat_bse.chi0_w.data,
                                         lat_rpa.chi0_w.data,
                                         decimal=2)

    print('ok!')

    print('--> cf Tr[chi_kwnn] and chi_wk')
    print(lat_bse.chi_w.data.reshape((4, 4)).real)
    print(loc_bse.chi_w.data.reshape((4, 4)).real)

    np.testing.assert_array_almost_equal(lat_bse.chi_w.data,
                                         loc_bse.chi_w.data)

    print('ok!')

    # ------------------------------------------------------------------
    # -- Store to hdf5

    filename = 'data_bse_rpa.h5'
    with HDFArchive(filename, 'w') as res:
        res['p'] = p
Пример #11
0
Файл: bse.py Проект: TRIQS/tprf
def solve_lattice_bse_at_specific_w(g_wk, gamma_wnn, nw_index):
    r""" Compute the generalized lattice susceptibility 
    :math:`\chi_{\bar{a}b\bar{c}d}(i\omega_{n=\mathrm{nw\_index}}, \mathbf{k})` using the Bethe-Salpeter 
    equation (BSE) for a specific :math:`i\omega_{n=\mathrm{nw\_index}}`.


    Parameters
    ----------

    g_wk : Gf,
           Single-particle Green's function :math:`G_{a\bar{b}}(i\nu_n, \mathbf{k})`.
    gamma_wnn : Gf,
                Local particle-hole vertex function 
                :math:`\Gamma_{a\bar{b}c\bar{d}}(i\omega_n, i\nu_n, i\nu_n')`.
    nw_index : int,
               The bosonic Matsubara frequency index :math:`i\omega_{n=\mathrm{nw\_index}}`
               at which the BSE is solved.

    Returns
    -------
    chi_k : Gf,
            Generalized lattice susceptibility 
            :math:`\chi_{\bar{a}b\bar{c}d}(i\omega_{n=\mathrm{nw\_index}}, \mathbf{k})`.

    chi0_k : Gf,
             Generalized bare lattice susceptibility 
             :math:`\chi^0_{\bar{a}b\bar{c}d}(i\omega_{n=\mathrm{nw\_index}}, \mathbf{k})`.
    """

    # Only use \Gamma at the specific \omega
    gamma_nn = gamma_wnn[Idx(nw_index), :, :]
    # Keep fake bosonic mesh for usability with other functions
    gamma_wnn = add_fake_bosonic_mesh(gamma_nn)

    fmesh_g = g_wk.mesh.components[0]
    kmesh = g_wk.mesh.components[1]

    bmesh = gamma_wnn.mesh.components[0]
    fmesh = gamma_wnn.mesh.components[1]

    nk = len(kmesh)
    nwf = len(fmesh) // 2
    nwf_g = len(fmesh_g) // 2

    if mpi.is_master_node():
        print(tprf_banner(), "\n")
        print(
            'Lattcie BSE with local vertex approximation at specific \omega.\n'
        )
        print('nk    =', nk)
        print('nw_index    =', nw_index)
        print('nwf   =', nwf)
        print('nwf_g =', nwf_g)
        print()

    mpi.report('--> chi0_wk_tail_corr')
    # Calculate chi0_wk up to the specific \omega
    chi0_wk_tail_corr = imtime_bubble_chi0_wk(g_wk,
                                              nw=np.abs(nw_index) + 1,
                                              save_memory=True)
    # Only use specific \omega, but put back on fake bosonic mesh
    chi0_k_tail_corr = chi0_wk_tail_corr[Idx(nw_index), :]
    chi0_wk_tail_corr = add_fake_bosonic_mesh(chi0_k_tail_corr,
                                              beta=bmesh.beta)

    chi0_nk = get_chi0_nk_at_specific_w(g_wk, nw_index=nw_index, nwf=nwf)
    # Keep fake bosonic mesh for usability with other functions
    chi0_wnk = add_fake_bosonic_mesh(chi0_nk)

    mpi.report('--> trace chi0_wnk')
    chi0_wk = chi0q_sum_nu(chi0_wnk)

    dchi_wk = chi0_wk_tail_corr - chi0_wk

    chi0_kw = Gf(mesh=MeshProduct(kmesh, bmesh),
                 target_shape=chi0_wk_tail_corr.target_shape)
    chi0_kw.data[:] = chi0_wk_tail_corr.data.swapaxes(0, 1)

    del chi0_wk
    del chi0_wk_tail_corr

    assert (chi0_wnk.mesh.components[0] == bmesh)
    assert (chi0_wnk.mesh.components[1] == fmesh)
    assert (chi0_wnk.mesh.components[2] == kmesh)

    # -- Lattice BSE calc with built in trace
    mpi.report('--> chi_kw from BSE')
    #mpi.report('DEBUG BSE INACTIVE'*72)
    chi_kw = chiq_sum_nu_from_chi0q_and_gamma_PH(chi0_wnk, gamma_wnn)
    #chi_kw = chi0_kw.copy()

    mpi.barrier()
    mpi.report('--> chi_kw from BSE (done)')

    del chi0_wnk

    mpi.report('--> chi_kw tail corrected (using chi0_wnk)')
    for k in kmesh:
        chi_kw[
            k, :] += dchi_wk[:,
                             k]  # -- account for high freq of chi_0 (better than nothing)

    del dchi_wk

    mpi.report('--> solve_lattice_bse, done.')

    chi_k = chi_kw[:, Idx(0)]
    del chi_kw

    chi0_k = chi0_kw[:, Idx(0)]
    del chi0_kw

    return chi_k, chi0_k
Пример #12
0
Файл: bse.py Проект: TRIQS/tprf
def solve_lattice_bse(g_wk, gamma_wnn):
    r""" Compute the generalized lattice susceptibility 
    :math:`\chi_{\bar{a}b\bar{c}d}(\mathbf{k}, \omega_n)` using the Bethe-Salpeter 
    equation (BSE).

    Parameters
    ----------

    g_wk : Gf,
           Single-particle Green's function :math:`G_{a\bar{b}}(i\nu_n, \mathbf{k})`.
    gamma_wnn : Gf,
                Local particle-hole vertex function 
                :math:`\Gamma_{a\bar{b}c\bar{d}}(i\omega_n, i\nu_n, i\nu_n')`.

    Returns
    -------
    chi_kw : Gf,
             Generalized lattice susceptibility 
             :math:`\chi_{\bar{a}b\bar{c}d}(\mathbf{k}, i\omega_n)`.

    chi0_kw : Gf,
              Generalized bare lattice susceptibility 
              :math:`\chi^0_{\bar{a}b\bar{c}d}(\mathbf{k}, i\omega_n)`.
    """

    fmesh_g = g_wk.mesh.components[0]
    kmesh = g_wk.mesh.components[1]

    bmesh = gamma_wnn.mesh.components[0]
    fmesh = gamma_wnn.mesh.components[1]

    nk = len(kmesh)
    nw = (len(bmesh) + 1) // 2
    nwf = len(fmesh) // 2
    nwf_g = len(fmesh_g) // 2

    if mpi.is_master_node():
        print(tprf_banner(), "\n")
        print('Lattcie BSE with local vertex approximation.\n')
        print('nk    =', nk)
        print('nw    =', nw)
        print('nwf   =', nwf)
        print('nwf_g =', nwf_g)
        print()

    mpi.report('--> chi0_wk_tail_corr')
    chi0_wk_tail_corr = imtime_bubble_chi0_wk(g_wk, nw=nw)

    mpi.barrier()
    mpi.report('B1 ' +
               str(chi0_wk_tail_corr[Idx(0), Idx(0, 0, 0)][0, 0, 0, 0]))
    mpi.barrier()

    chi0_wnk = get_chi0_wnk(g_wk, nw=nw, nwf=nwf)

    mpi.barrier()
    mpi.report('C ' + str(chi0_wnk[Idx(0), Idx(0), Idx(0, 0, 0)][0, 0, 0, 0]))
    mpi.barrier()

    mpi.report('--> trace chi0_wnk')
    chi0_wk = chi0q_sum_nu(chi0_wnk)

    mpi.barrier()
    mpi.report('D ' + str(chi0_wk[Idx(0), Idx(0, 0, 0)][0, 0, 0, 0]))
    mpi.barrier()

    dchi_wk = chi0_wk_tail_corr - chi0_wk

    chi0_kw = Gf(mesh=MeshProduct(kmesh, bmesh),
                 target_shape=chi0_wk_tail_corr.target_shape)
    chi0_kw.data[:] = chi0_wk_tail_corr.data.swapaxes(0, 1)

    del chi0_wk
    del chi0_wk_tail_corr

    assert (chi0_wnk.mesh.components[0] == bmesh)
    assert (chi0_wnk.mesh.components[1] == fmesh)
    assert (chi0_wnk.mesh.components[2] == kmesh)

    # -- Lattice BSE calc with built in trace
    mpi.report('--> chi_kw from BSE')
    #mpi.report('DEBUG BSE INACTIVE'*72)
    chi_kw = chiq_sum_nu_from_chi0q_and_gamma_PH(chi0_wnk, gamma_wnn)
    #chi_kw = chi0_kw.copy()

    mpi.barrier()
    mpi.report('--> chi_kw from BSE (done)')

    del chi0_wnk

    mpi.report('--> chi_kw tail corrected (using chi0_wnk)')
    for k in kmesh:
        chi_kw[
            k, :] += dchi_wk[:,
                             k]  # -- account for high freq of chi_0 (better than nothing)

    del dchi_wk

    mpi.report('--> solve_lattice_bse, done.')

    return chi_kw, chi0_kw
Пример #13
0
# ----------------------------------------------------------------------

p = ParameterCollection(beta = 10,
                        nw = 10,
                        nk = 4,
                        norb = 2,)

wmesh = MeshImFreq(beta=p.beta, S='Fermion', n_max=p.nw)

cell = np.eye(3)
bl = BravaisLattice(cell)
bz = BrillouinZone(bl)
kmesh = MeshBrZone(bz, p.nk * np.eye(3, dtype=int))

gf = Gf(mesh=MeshProduct(wmesh, kmesh), target_shape=2*(p.norb,))
gf.data[:] = np.random.rand(*gf.data.shape)

# -- Eexception handling
try:
    enforce_symmetry(gf, "something", "odd")
except ValueError as error:
    if not str(error) == "No symmetrize function for this variable exists.":
        raise Exception("Wrong exception was raised: \n %s"%error)
else:
    raise Exception("Function call should have failed.")

try:
    enforce_symmetry(gf, "frequency", "weird")
except ValueError as error:
    if not str(error) == "Symmetry can only be 'even' or 'odd'.":
Пример #14
0
def make_calc():
            
    # ------------------------------------------------------------------
    # -- Read precomputed ED data

    filename = "bse_and_rpa_loc_vs_latt.tar.gz"
    p = read_TarGZ_HDFArchive(filename)['p']
    
    # ------------------------------------------------------------------
    # -- RPA tensor
    
    from triqs_tprf.rpa_tensor import get_rpa_tensor
    from triqs_tprf.rpa_tensor import fundamental_operators_from_gf_struct
    
    fundamental_operators = fundamental_operators_from_gf_struct(p.gf_struct)
    p.U_abcd = get_rpa_tensor(p.H_int, fundamental_operators)

    # ------------------------------------------------------------------
    # -- Generalized PH susceptibility
            
    loc_bse = ParameterCollection()
         
    loc_bse.chi_wnn = chi_from_gg2_PH(p.G_iw, p.G2_iw_ph)
    loc_bse.chi0_wnn = chi0_from_gg2_PH(p.G_iw, p.G2_iw_ph)
    
    loc_bse.gamma_wnn = inverse_PH(loc_bse.chi0_wnn) - inverse_PH(loc_bse.chi_wnn)
    loc_bse.chi_wnn_ref = inverse_PH( inverse_PH(loc_bse.chi0_wnn) - loc_bse.gamma_wnn )

    np.testing.assert_array_almost_equal(
        loc_bse.chi_wnn.data, loc_bse.chi_wnn_ref.data)

    from triqs_tprf.bse import solve_local_bse
    loc_bse.gamma_wnn_ref = solve_local_bse(loc_bse.chi0_wnn, loc_bse.chi_wnn)

    np.testing.assert_array_almost_equal(
        loc_bse.gamma_wnn.data, loc_bse.gamma_wnn_ref.data)
    
    loc_bse.chi0_w = trace_nn(loc_bse.chi0_wnn)
    loc_bse.chi_w = trace_nn(loc_bse.chi_wnn)

    # ------------------------------------------------------------------
    # -- RPA, using BSE inverses and constant Gamma

    loc_rpa = ParameterCollection()

    loc_rpa.chi0_wnn = loc_bse.chi0_wnn
    loc_rpa.chi0_w = loc_bse.chi0_w

    loc_rpa.U_abcd = p.U_abcd
    
    # -- Build constant gamma
    from triqs_tprf.rpa_tensor import get_gamma_rpa
    loc_rpa.gamma_wnn = get_gamma_rpa(loc_rpa.chi0_wnn, loc_rpa.U_abcd)
    
    # -- Solve RPA
    loc_rpa.chi_wnn = inverse_PH( inverse_PH(loc_rpa.chi0_wnn) - loc_rpa.gamma_wnn )
    loc_rpa.chi_w = trace_nn(loc_rpa.chi_wnn)
    
    # ------------------------------------------------------------------
    # -- Bubble RPA on lattice

    lat_rpa = ParameterCollection()
    
    # -- Setup dummy lattice Green's function equal to local Green's function
    
    bz = BrillouinZone(BravaisLattice(units=np.eye(3), orbital_positions=[(0,0,0)]))
    periodization_matrix = np.diag(np.array(list([1]*3), dtype=int))
    kmesh = MeshBrZone(bz, periodization_matrix)    
    wmesh = MeshImFreq(beta=p.beta, S='Fermion', n_max=p.nwf_gf)

    lat_rpa.g_wk = Gf(mesh=MeshProduct(wmesh, kmesh), target_shape=p.G_iw.target_shape)
    lat_rpa.g_wk[:, Idx(0, 0, 0)] = p.G_iw

    # -- chi0_wk bubble and chi_wk_rpa bubble RPA

    from triqs_tprf.lattice_utils import imtime_bubble_chi0_wk
    lat_rpa.chi0_wk = imtime_bubble_chi0_wk(lat_rpa.g_wk, nw=1)

    from triqs_tprf.lattice import solve_rpa_PH
    lat_rpa.chi_wk = solve_rpa_PH(lat_rpa.chi0_wk, p.U_abcd)

    lat_rpa.chi0_w = lat_rpa.chi0_wk[:, Idx(0,0,0)]
    lat_rpa.chi_w = lat_rpa.chi_wk[:, Idx(0,0,0)]

    print('--> cf Tr[chi0] and chi0_wk')
    print(loc_rpa.chi0_w.data.reshape((4, 4)).real)
    print(lat_rpa.chi0_w.data.reshape((4, 4)).real)

    np.testing.assert_array_almost_equal(
        loc_rpa.chi0_w.data, lat_rpa.chi0_w.data, decimal=2)

    print('ok!')

    print('--> cf Tr[chi_rpa] and chi_wk_rpa')
    print(loc_rpa.chi_w.data.reshape((4, 4)).real)
    print(lat_rpa.chi_w.data.reshape((4, 4)).real)

    np.testing.assert_array_almost_equal(
        loc_rpa.chi_w.data, lat_rpa.chi_w.data, decimal=2)

    print('ok!')
    
    # ------------------------------------------------------------------
    # -- Lattice BSE

    lat_bse = ParameterCollection()

    lat_bse.g_wk = lat_rpa.g_wk
    
    lat_bse.mu = p.mu

    lat_bse.e_k = Gf(mesh=kmesh, target_shape=p.G_iw.target_shape)
    lat_bse.e_k[Idx(0,0,0)] = np.eye(2)

    lat_bse.sigma_w = p.G_iw.copy()
    lat_bse.sigma_w << iOmega_n + lat_bse.mu * np.eye(2) - lat_bse.e_k[Idx(0,0,0)] - inverse(p.G_iw)

    lat_bse.g_wk_ref = lat_bse.g_wk.copy()
    lat_bse.g_wk_ref[:,Idx(0,0,0)] << inverse(
        iOmega_n + lat_bse.mu * np.eye(2) - lat_bse.e_k[Idx(0,0,0)] - lat_bse.sigma_w)

    np.testing.assert_array_almost_equal(lat_bse.g_wk.data, lat_bse.g_wk_ref.data)

    #for w in lat_bse.g_wk.mesh.components[0]:
    #    print w, lat_bse.g_wk[w, Idx(0,0,0)][0, 0]

    from triqs_tprf.lattice import fourier_wk_to_wr
    lat_bse.g_wr = fourier_wk_to_wr(lat_bse.g_wk)

    from triqs_tprf.lattice import chi0r_from_gr_PH
    lat_bse.chi0_wnr = chi0r_from_gr_PH(nw=1, nn=p.nwf, g_nr=lat_bse.g_wr)

    from triqs_tprf.lattice import chi0q_from_chi0r
    lat_bse.chi0_wnk = chi0q_from_chi0r(lat_bse.chi0_wnr)

    #for n in lat_bse.chi0_wnk.mesh.components[1]:
    #    print n.value, lat_bse.chi0_wnk[Idx(0), n, Idx(0,0,0)][0,0,0,0]

    # -- Lattice BSE calc
    from triqs_tprf.lattice import chiq_from_chi0q_and_gamma_PH
    lat_bse.chi_kwnn = chiq_from_chi0q_and_gamma_PH(lat_bse.chi0_wnk, loc_bse.gamma_wnn)

    # -- Lattice BSE calc with built in trace
    from triqs_tprf.lattice import chiq_sum_nu_from_chi0q_and_gamma_PH
    lat_bse.chi_kw_ref = chiq_sum_nu_from_chi0q_and_gamma_PH(lat_bse.chi0_wnk, loc_bse.gamma_wnn)

    # -- Lattice BSE calc with built in trace using g_wk
    from triqs_tprf.lattice import chiq_sum_nu_from_g_wk_and_gamma_PH
    lat_bse.chi_kw_tail_corr_ref = chiq_sum_nu_from_g_wk_and_gamma_PH(lat_bse.g_wk, loc_bse.gamma_wnn)
    
    # -- Trace results
    from triqs_tprf.lattice import chi0q_sum_nu_tail_corr_PH
    from triqs_tprf.lattice import chi0q_sum_nu
    lat_bse.chi0_wk_tail_corr = chi0q_sum_nu_tail_corr_PH(lat_bse.chi0_wnk)
    lat_bse.chi0_wk = chi0q_sum_nu(lat_bse.chi0_wnk)

    from triqs_tprf.lattice import chiq_sum_nu, chiq_sum_nu_q
    lat_bse.chi_kw = chiq_sum_nu(lat_bse.chi_kwnn)
    
    np.testing.assert_array_almost_equal(lat_bse.chi_kw.data, lat_bse.chi_kw_ref.data)

    from triqs_tprf.bse import solve_lattice_bse
    lat_bse.chi_kw_tail_corr, tmp = solve_lattice_bse(lat_bse.g_wk, loc_bse.gamma_wnn)

    from triqs_tprf.bse import solve_lattice_bse_e_k_sigma_w
    lat_bse.chi_kw_tail_corr_new = solve_lattice_bse_e_k_sigma_w(lat_bse.mu, lat_bse.e_k, lat_bse.sigma_w, loc_bse.gamma_wnn)

    np.testing.assert_array_almost_equal(lat_bse.chi_kw_tail_corr.data, lat_bse.chi_kw_tail_corr_ref.data)
    np.testing.assert_array_almost_equal(lat_bse.chi_kw_tail_corr.data, lat_bse.chi_kw_tail_corr_new.data)
    np.testing.assert_array_almost_equal(lat_bse.chi_kw_tail_corr_ref.data, lat_bse.chi_kw_tail_corr_new.data)
    
    lat_bse.chi0_w_tail_corr = lat_bse.chi0_wk_tail_corr[:, Idx(0, 0, 0)]
    lat_bse.chi0_w = lat_bse.chi0_wk[:, Idx(0, 0, 0)]
    lat_bse.chi_w_tail_corr = lat_bse.chi_kw_tail_corr[Idx(0, 0, 0), :]
    lat_bse.chi_w = lat_bse.chi_kw[Idx(0, 0, 0), :]

    print('--> cf Tr[chi0_wnk] and chi0_wk')
    print(lat_bse.chi0_w_tail_corr.data.reshape((4, 4)).real)
    print(lat_bse.chi0_w.data.reshape((4, 4)).real)
    print(lat_rpa.chi0_w.data.reshape((4, 4)).real)

    np.testing.assert_array_almost_equal(
        lat_bse.chi0_w_tail_corr.data, lat_rpa.chi0_w.data)

    np.testing.assert_array_almost_equal(
        lat_bse.chi0_w.data, lat_rpa.chi0_w.data, decimal=2)
    
    print('ok!')
    
    print('--> cf Tr[chi_kwnn] and chi_wk (without chi0 tail corr)')
    print(lat_bse.chi_w.data.reshape((4, 4)).real)
    print(loc_bse.chi_w.data.reshape((4, 4)).real)

    np.testing.assert_array_almost_equal(
        lat_bse.chi_w.data, loc_bse.chi_w.data)

    print('ok!')

    # ------------------------------------------------------------------
    # -- Use chi0 tail corrected trace to correct chi_rpa cf bubble

    dchi_wk = lat_bse.chi0_wk_tail_corr - lat_bse.chi0_wk
    dchi_w = dchi_wk[:, Idx(0, 0, 0)]
    
    loc_rpa.chi_w_tail_corr = loc_rpa.chi_w + dchi_w

    # -- this will be the same, but it will be close to the real physical value
    lat_bse.chi_w_tail_corr_ref = lat_bse.chi_w + dchi_w
    loc_bse.chi_w_tail_corr_ref = loc_bse.chi_w + dchi_w
    
    print('--> cf Tr[chi_rpa] and chi_wk_rpa')
    print(loc_rpa.chi_w.data.reshape((4, 4)).real)
    print(loc_rpa.chi_w_tail_corr.data.reshape((4, 4)).real)
    print(lat_rpa.chi_w.data.reshape((4, 4)).real)

    np.testing.assert_array_almost_equal(
        loc_rpa.chi_w_tail_corr.data, lat_rpa.chi_w.data, decimal=3)

    print('--> cf Tr[chi_kwnn] with tail corr (from chi0_wnk)')
    print(lat_bse.chi_w_tail_corr.data.reshape((4, 4)).real)
    print(lat_bse.chi_w_tail_corr_ref.data.reshape((4, 4)).real)

    np.testing.assert_array_almost_equal(
        lat_bse.chi_w_tail_corr.data, lat_bse.chi_w_tail_corr_ref.data)
    
    print('ok!')

    # ------------------------------------------------------------------
    # -- Store to hdf5
    
    filename = 'data_bse_rpa.h5'
    with HDFArchive(filename,'w') as res:
        res['p'] = p
Пример #15
0
        list(map(np.array, list(zip(*list(x)))))
        for x in mesh_product_iterator(chi4_tau.mesh)
    ]


# ----------------------------------------------------------------------
if __name__ == '__main__':

    nw = 20
    nt = 45
    beta = 2.0

    imtime = MeshImTime(beta, 'Fermion', nt)
    imfreq = MeshImFreq(beta, 'Fermion', nw)

    imtime3 = MeshProduct(imtime, imtime, imtime)
    imfreq3 = MeshProduct(imfreq, imfreq, imfreq)

    chi4_tau = Gf(name=r'$g(\tau)$', mesh=imtime3, target_shape=[1, 1, 1, 1])

    print(dir(chi4_tau.indices))
    for i in chi4_tau.indices:
        print(i)
    exit()

    # -- Smooth anti-periodic function
    w = 0.5
    e1, e2, e3 = w, w, w
    E = np.array([e1, e2, e3])
    for idx, tau in mesh_product_iterator_numpy(chi4_tau.mesh):
        chi4_tau[idx.tolist()][:] = np.sum(np.cos(np.pi * E * tau))