FLAGS = parser.parse_args()

    # We use a simple model that takes 2 input tensors of 16 integers
    # each and returns 2 output tensors of 16 integers each. One
    # output tensor is the element-wise sum of the inputs and one
    # output is the element-wise difference.
    model_name = "simple_int8"
    model_version = ""
    batch_size = 1

    # Create gRPC stub for communicating with the server
    channel = grpc.insecure_channel(FLAGS.url)
    grpc_stub = service_pb2_grpc.GRPCInferenceServiceStub(channel)

    # Generate the request
    request = service_pb2.ModelInferRequest()
    request.model_name = model_name
    request.model_version = model_version

    # Input data
    input0_data = [i for i in range(16)]
    input1_data = [1 for i in range(16)]

    # Populate the inputs in inference request
    input0 = service_pb2.ModelInferRequest().InferInputTensor()
    input0.name = "INPUT0"
    input0.datatype = "INT8"
    input0.shape.extend([1, 16])
    input0.contents.int_contents[:] = input0_data

    input1 = service_pb2.ModelInferRequest().InferInputTensor()
Пример #2
0
def requestGenerator(input_name, output_name, c, h, w, format, dtype, FLAGS,
                     result_filenames, supports_batching):
    request = service_pb2.ModelInferRequest()
    request.model_name = FLAGS.model_name
    request.model_version = FLAGS.model_version

    filenames = []
    if os.path.isdir(FLAGS.image_filename):
        filenames = [
            os.path.join(FLAGS.image_filename, f)
            for f in os.listdir(FLAGS.image_filename)
            if os.path.isfile(os.path.join(FLAGS.image_filename, f))
        ]
    else:
        filenames = [
            FLAGS.image_filename,
        ]

    filenames.sort()

    output = service_pb2.ModelInferRequest().InferRequestedOutputTensor()
    output.name = output_name
    output.parameters['classification'].int64_param = FLAGS.classes
    request.outputs.extend([output])

    input = service_pb2.ModelInferRequest().InferInputTensor()
    input.name = input_name
    input.datatype = dtype
    if format == mc.ModelInput.FORMAT_NHWC:
        input.shape.extend(
            [FLAGS.batch_size, h, w, c] if supports_batching else [h, w, c])
    else:
        input.shape.extend(
            [FLAGS.batch_size, c, h, w] if supports_batching else [c, h, w])

    # Preprocess image into input data according to model requirements
    # Preprocess the images into input data according to model
    # requirements
    image_data = []
    for filename in filenames:
        img = Image.open(filename)
        image_data.append(preprocess(img, format, dtype, c, h, w,
                                     FLAGS.scaling))

    # Send requests of FLAGS.batch_size images. If the number of
    # images isn't an exact multiple of FLAGS.batch_size then just
    # start over with the first images until the batch is filled.
    image_idx = 0
    last_request = False
    while not last_request:
        input_bytes = None
        input_filenames = []
        request.ClearField("inputs")
        request.ClearField("raw_input_contents")
        for idx in range(FLAGS.batch_size):
            input_filenames.append(filenames[image_idx])
            if input_bytes is None:
                input_bytes = image_data[image_idx].tobytes()
            else:
                input_bytes += image_data[image_idx].tobytes()

            image_idx = (image_idx + 1) % len(image_data)
            if image_idx == 0:
                last_request = True

        request.inputs.extend([input])
        result_filenames.append(input_filenames)
        request.raw_input_contents.extend([input_bytes])
        yield request