def test_batch_request_for_batching_model(self): input_size = 16 # graphdef_nobatch_int32_int8_int8 is non batching version. # The server should return an error if the batch size dimension # is included in the shape tensor_shape = (1, input_size) for protocol in ["http", "grpc"]: model_name = tu.get_model_name("graphdef", np.int32, np.int8, np.int8) in0 = np.random.randint(low=0, high=100, size=tensor_shape, dtype=np.int32) in1 = np.random.randint(low=0, high=100, size=tensor_shape, dtype=np.int32) inputs = [] outputs = [] if protocol == "http": triton_client = tritonhttpclient.InferenceServerClient(url='localhost:8000', verbose=True) inputs.append(tritonhttpclient.InferInput('INPUT0', tensor_shape , "INT32")) inputs.append(tritonhttpclient.InferInput('INPUT1', tensor_shape, "INT32")) outputs.append(tritonhttpclient.InferRequestedOutput('OUTPUT0')) outputs.append(tritonhttpclient.InferRequestedOutput('OUTPUT1')) else: triton_client = tritongrpcclient.InferenceServerClient(url='localhost:8001', verbose=True) inputs.append(tritongrpcclient.InferInput('INPUT0', tensor_shape , "INT32")) inputs.append(tritongrpcclient.InferInput('INPUT1', tensor_shape, "INT32")) outputs.append(tritongrpcclient.InferRequestedOutput('OUTPUT0')) outputs.append(tritongrpcclient.InferRequestedOutput('OUTPUT1')) # Initialize the data inputs[0].set_data_from_numpy(in0) inputs[1].set_data_from_numpy(in1) results = triton_client.infer(model_name, inputs, outputs=outputs)
def _basic_inference(self, shm_ip0_handle, shm_ip1_handle, shm_op0_handle, shm_op1_handle, error_msg, big_shm_name="", big_shm_size=64): input0_data = np.arange(start=0, stop=16, dtype=np.int32) input1_data = np.ones(shape=16, dtype=np.int32) inputs = [] outputs = [] if _protocol == "http": triton_client = httpclient.InferenceServerClient(_url, verbose=True) inputs.append(httpclient.InferInput("INPUT0", [1, 16], "INT32")) inputs.append(httpclient.InferInput("INPUT1", [1, 16], "INT32")) outputs.append( httpclient.InferRequestedOutput('OUTPUT0', binary_data=False)) outputs.append( httpclient.InferRequestedOutput('OUTPUT1', binary_data=False)) else: triton_client = grpcclient.InferenceServerClient(_url, verbose=True) inputs.append(grpcclient.InferInput("INPUT0", [1, 16], "INT32")) inputs.append(grpcclient.InferInput("INPUT1", [1, 16], "INT32")) outputs.append(grpcclient.InferRequestedOutput('OUTPUT0')) outputs.append(grpcclient.InferRequestedOutput('OUTPUT1')) inputs[0].set_shared_memory("input0_data", 64) if type(shm_ip1_handle) == np.array: inputs[1].set_data_from_numpy(input0_data, binary_data=False) elif big_shm_name != "": inputs[1].set_shared_memory(big_shm_name, big_shm_size) else: inputs[1].set_shared_memory("input1_data", 64) outputs[0].set_shared_memory("output0_data", 64) outputs[1].set_shared_memory("output1_data", 64) try: results = triton_client.infer("simple", inputs, model_version="", outputs=outputs) output = results.get_output('OUTPUT0') if _protocol == "http": output_datatype = output['datatype'] output_shape = output['shape'] else: output_datatype = output.datatype output_shape = output.shape output_dtype = triton_to_np_dtype(output_datatype) output_data = shm.get_contents_as_numpy(shm_op0_handle, output_dtype, output_shape) self.assertTrue( (output_data[0] == (input0_data + input1_data)).all()) except Exception as ex: error_msg.append(str(ex))
def requestGenerator(input_name, output_name, c, h, w, format, dtype, FLAGS): # Preprocess image into input data according to model requirements image_data = None with Image.open(FLAGS.image_filename) as img: image_data = preprocess(img, format, dtype, c, h, w, FLAGS.scaling) repeated_image_data = [image_data for _ in range(FLAGS.batch_size)] batched_image_data = np.stack(repeated_image_data, axis=0) # Set the input data inputs = [] if FLAGS.protocol.lower() == "grpc": inputs.append( tritongrpcclient.InferInput(input_name, batched_image_data.shape, dtype)) inputs[0].set_data_from_numpy(batched_image_data) else: inputs.append( tritonhttpclient.InferInput(input_name, batched_image_data.shape, dtype)) inputs[0].set_data_from_numpy(batched_image_data, binary_data=False) outputs = [] if FLAGS.protocol.lower() == "grpc": outputs.append( tritongrpcclient.InferRequestedOutput(output_name, class_count=FLAGS.classes)) else: outputs.append( tritonhttpclient.InferRequestedOutput(output_name, binary_data=False, class_count=FLAGS.classes)) yield inputs, outputs, FLAGS.model_name, FLAGS.model_version
def sync_send(triton_client, result_list, values, batch_size, sequence_id, model_name, model_version): count = 1 for value in values: # Create the tensor for INPUT value_data = np.full(shape=[batch_size, 1], fill_value=value, dtype=np.int32) inputs = [] inputs.append( tritongrpcclient.InferInput('INPUT', value_data.shape, "INT32")) # Initialize the data inputs[0].set_data_from_numpy(value_data) outputs = [] outputs.append(tritongrpcclient.InferRequestedOutput('OUTPUT')) # Issue the synchronous sequence inference. result = triton_client.infer(model_name=model_name, inputs=inputs, outputs=outputs, sequence_id=sequence_id, sequence_start=(count == 1), sequence_end=(count == len(values))) result_list.append(result.as_numpy('OUTPUT')) count = count + 1
def requestGenerator(batched_image_data, input_name, output_name, dtype, FLAGS): # Set the input data inputs = [] if FLAGS.protocol.lower() == "grpc": inputs.append( tritongrpcclient.InferInput(input_name, batched_image_data.shape, dtype)) inputs[0].set_data_from_numpy(batched_image_data) else: inputs.append( tritonhttpclient.InferInput(input_name, batched_image_data.shape, dtype)) inputs[0].set_data_from_numpy(batched_image_data, binary_data=True) outputs = [] if FLAGS.protocol.lower() == "grpc": outputs.append( tritongrpcclient.InferRequestedOutput(output_name, class_count=FLAGS.classes)) else: outputs.append( tritonhttpclient.InferRequestedOutput(output_name, binary_data=True, class_count=FLAGS.classes)) yield inputs, outputs, FLAGS.model_name, FLAGS.model_version
def detector(self, frames): infer_inputs = [ triton.InferInput('input_1', (len(frames), 3, *self.resize[::-1]), "FP32") ] frames = np.array(frames, dtype=np.float32) frames = np.transpose(frames, (0, 3, 1, 2)) infer_inputs[0].set_data_from_numpy(frames) result = self.triton_client.infer('retinanet', infer_inputs) scores = result.as_numpy('scores').reshape((-1, 100)) boxes = result.as_numpy('boxes').reshape((-1, 100, 4)) classes = result.as_numpy('classes').reshape((-1, 100)) # Calculate embeddings for all the detected subjects embs = [] scores_filtered = [] boxes_filters = [] for i in range(len(frames)): mask = (scores[i] > 0.4) & ( classes[i] == 0) # only care about 'person' with score > 0.4 scores_i = scores[i, mask] boxes_i = boxes[i, mask] scores_i, boxes_i = self.bbox_filter(scores_i, boxes_i) img = frames[i].astype(np.uint8) # (3, 800, 1280) embs_i = [] boxes_i = boxes_i.astype(int) for j in range(len(boxes_i)): imp = img[:, boxes_i[j, 1]:boxes_i[j, 3], boxes_i[j, 0]:boxes_i[j, 2]] imp = np.transpose(imp, (1, 2, 0)) imp = Image.fromarray(imp) data = [ np.asarray(transforms.Resize(size=(256, 128))(imp)).astype( np.float32) ] inputs = [] inputs.append( tritongrpcclient.InferInput('image', [len(data), 256, 128, 3], "FP32")) # Initialize the data inputs[0].set_data_from_numpy(np.asarray(data)) outputs = [] outputs.append( tritongrpcclient.InferRequestedOutput('features')) results = self.triton_client.infer('osnet_ensemble', inputs, outputs=outputs) emb = np.squeeze(results.as_numpy('features')) embs_i.append(emb / np.linalg.norm(emb)) embs.append(embs_i) scores_filtered.append(scores_i) boxes_filters.append(boxes_i) return np.asarray(scores_filtered), np.asarray( boxes_filters), np.asarray(embs)
def setUp(self): self.trials_ = [("repeat_int32", None), ("simple_repeat", None), ("sequence_repeat", None), ("repeat_square", self._nested_validate), ("nested_square", self._nested_validate)] self.model_name_ = "repeat_int32" self.inputs_ = [] self.inputs_.append(grpcclient.InferInput('IN', [1], "INT32")) self.inputs_.append(grpcclient.InferInput('DELAY', [1], "UINT32")) self.inputs_.append(grpcclient.InferInput('WAIT', [1], "UINT32")) self.outputs_ = [] self.outputs_.append(grpcclient.InferRequestedOutput('OUT')) self.outputs_.append(grpcclient.InferRequestedOutput('IDX')) # Some trials only expect a subset of outputs self.requested_outputs_ = self.outputs_
def _initialize_model(self): input_cfg = self.model_config['config']['input'] output_cfg = self.model_config['config']['output'] input_names = [i['name'] for i in input_cfg] output_names = [o['name'] for o in output_cfg] print('Input layers: ', output_names) print('Output layers: ', output_names) input_dims = [[int(dim) for dim in input_cfg[i]['dims']] for i in range(len(input_cfg))] output_dims = [[int(dim) for dim in output_cfg[i]['dims']] for i in range(len(output_cfg))] self.input_shape = input_dims[0] self.output_dims = output_dims if self.triton_cfg['model']['precision'] == "FP32": mult = 4 elif self.triton_cfg['model']['precision'] == "FP16": mult = 2 # TODO: Fix this elif self.triton_cfg['model']['precision'] == "INT8": mult = 1 # TODO: Fix this else: print("unsupported precision in config file: " + str(self.triton_cfg['model']['precision'])) sys.exit() input_byte_sizes_list = [ self._prod(dims) * mult for dims in input_dims ] output_byte_sizes_list = [ self._prod(dims) * mult for dims in output_dims ] for i in range(len(input_cfg)): shm_region_name = self.model_name + "_input" + str(i) self._register_system_shm_regions(shm_region_name, self.input_handles, input_byte_sizes_list[i], input_names[i]) self.input_layers.append( tritongrpcclient.InferInput( input_names[i], [1, input_dims[i][0], input_dims[i][1], input_dims[i][2]], "FP32")) self.input_layers[-1].set_shared_memory(shm_region_name, input_byte_sizes_list[i]) for i in range(len(output_cfg)): shm_region_name = self.model_name + "_output" + str(i) self._register_system_shm_regions(shm_region_name, self.output_handles, output_byte_sizes_list[i], output_names[i]) self.output_layers.append( tritongrpcclient.InferRequestedOutput(output_names[i])) self.output_layers[-1].set_shared_memory(shm_region_name, output_byte_sizes_list[i])
def main(): FLAGS = parse_args() try: triton_client = tritongrpcclient.InferenceServerClient(url=FLAGS.url, verbose=FLAGS.verbose) except Exception as e: print("channel creation failed: " + str(e)) sys.exit(1) model_name = FLAGS.model_name model_version = -1 print("Loading images") image_data, labels = load_images(FLAGS.img_dir if FLAGS.img_dir is not None else FLAGS.img) image_data = array_from_list(image_data) print("Images loaded, inferring") # Infer outputs = [] input_name = "INPUT" output_name = "OUTPUT" input_shape = list(image_data.shape) outputs.append(tritongrpcclient.InferRequestedOutput(output_name)) img_idx = 0 for batch in batcher(image_data, FLAGS.batch_size): print("Input mean before backend processing:", np.mean(batch)) input_shape[0] = np.shape(batch)[0] print("Batch size: ", input_shape[0]) inputs = [tritongrpcclient.InferInput(input_name, input_shape, "UINT8")] # Initialize the data inputs[0].set_data_from_numpy(batch) # Test with outputs results = triton_client.infer(model_name=model_name, inputs=inputs, outputs=outputs) # Get the output arrays from the results output0_data = results.as_numpy(output_name) print("Output mean after backend processing:", np.mean(output0_data)) print("Output shape: ", np.shape(output0_data)) maxs = np.argmax(output0_data, axis=1) for i in range(len(maxs)): print("Sample ", i, " - label: ", maxs[i], " ~ ", output0_data[i, maxs[i]]) if maxs[i] != labels[img_idx]: sys.exit(1) else: print("pass") img_idx += 1 statistics = triton_client.get_inference_statistics(model_name=model_name) if len(statistics.model_stats) != 1: print("FAILED: Inference Statistics") sys.exit(1)
def setUp(self): self.model_name_ = "repeat_int32" self.inputs_ = [] self.inputs_.append(grpcclient.InferInput('IN', [1, 1], "INT32")) self.inputs_.append(grpcclient.InferInput('DELAY', [1, 1], "UINT32")) self.inputs_.append(grpcclient.InferInput('WAIT', [1, 1], "UINT32")) self.outputs_ = [] self.outputs_.append(grpcclient.InferRequestedOutput('OUT'))
def main(): FLAGS = parse_args() try: triton_client = tritongrpcclient.InferenceServerClient( url=FLAGS.url, verbose=FLAGS.verbose) except Exception as e: print("channel creation failed: " + str(e)) sys.exit(1) model_name = FLAGS.model_name model_version = -1 input_data = [ randint(0, 255, size=randint(100), dtype='uint8') for _ in range(randint(100) * FLAGS.batch_size) ] input_data = array_from_list(input_data) # Infer outputs = [] input_name = "DALI_INPUT_0" output_name = "DALI_OUTPUT_0" input_shape = list(input_data.shape) outputs.append(tritongrpcclient.InferRequestedOutput(output_name)) for batch in batcher(input_data, FLAGS.batch_size): print("Input mean before backend processing:", np.mean(batch)) input_shape[0] = np.shape(batch)[0] print("Batch size: ", input_shape[0]) inputs = [ tritongrpcclient.InferInput(input_name, input_shape, "UINT8") ] # Initialize the data inputs[0].set_data_from_numpy(batch) # Test with outputs results = triton_client.infer(model_name=model_name, inputs=inputs, outputs=outputs) # Get the output arrays from the results output0_data = results.as_numpy(output_name) print("Output mean after backend processing:", np.mean(output0_data)) print("Output shape: ", np.shape(output0_data)) if not math.isclose(np.mean(output0_data), np.mean(batch)): print("Pre/post average does not match") sys.exit(1) else: print("pass") statistics = triton_client.get_inference_statistics(model_name=model_name) if len(statistics.model_stats) != 1: print("FAILED: Inference Statistics") sys.exit(1)
def test_nobatch_request_for_batching_model(self): input_size = 16 # graphdef_int32_int8_int8 has a batching version with max batch size of 8. # The server should return an error if the batch size is not included in the # input shapes. tensor_shape = (input_size,) for protocol in ["http", "grpc"]: model_name = tu.get_model_name("graphdef", np.int32, np.int8, np.int8) in0 = np.random.randint(low=0, high=100, size=tensor_shape, dtype=np.int32) in1 = np.random.randint(low=0, high=100, size=tensor_shape, dtype=np.int32) inputs = [] outputs = [] if protocol == "http": triton_client = tritonhttpclient.InferenceServerClient(url='localhost:8000', verbose=True) inputs.append(tritonhttpclient.InferInput('INPUT0', tensor_shape , "INT32")) inputs.append(tritonhttpclient.InferInput('INPUT1', tensor_shape, "INT32")) outputs.append(tritonhttpclient.InferRequestedOutput('OUTPUT0')) outputs.append(tritonhttpclient.InferRequestedOutput('OUTPUT1')) else: triton_client = tritongrpcclient.InferenceServerClient(url='localhost:8001', verbose=True) inputs.append(tritongrpcclient.InferInput('INPUT0', tensor_shape , "INT32")) inputs.append(tritongrpcclient.InferInput('INPUT1', tensor_shape, "INT32")) outputs.append(tritongrpcclient.InferRequestedOutput('OUTPUT0')) outputs.append(tritongrpcclient.InferRequestedOutput('OUTPUT1')) # Initialize the data inputs[0].set_data_from_numpy(in0) inputs[1].set_data_from_numpy(in1) try: results = triton_client.infer(model_name, inputs, outputs=outputs) self.assertTrue(False, "expected failure with no batch request for batching model") except InferenceServerException as ex: pass
def _prepare_request(self, protocol): if (protocol == "grpc"): self.inputs_ = [] self.inputs_.append(grpcclient.InferInput('INPUT0', [1, 1], "INT32")) self.outputs_ = [] self.outputs_.append(grpcclient.InferRequestedOutput('OUTPUT0')) else: self.inputs_ = [] self.inputs_.append(httpclient.InferInput('INPUT0', [1, 1], "INT32")) self.outputs_ = [] self.outputs_.append(httpclient.InferRequestedOutput('OUTPUT0')) self.inputs_[0].set_data_from_numpy(self.input0_data_)
def request_eval(hit_data,row_splits, triton_client, model_name): np_rs_type = 'int64' tr_rs_type = 'INT64' inputs = [] outputs = [] #print(hit_data.shape) #print(row_splits.shape) inputs.append(tritongrpcclient.InferInput('input_1', hit_data.shape, 'FP32')) inputs.append(tritongrpcclient.InferInput('input_2', row_splits.shape, tr_rs_type)) #INT64 inputs[0].set_data_from_numpy(hit_data) inputs[1].set_data_from_numpy(row_splits) outputs.append(tritongrpcclient.InferRequestedOutput('output')) outputs.append(tritongrpcclient.InferRequestedOutput('output_1')) #outputs.append(tritongrpcclient.InferRequestedOutput('predicted_final_condensates')) #outputs.append(tritongrpcclient.InferRequestedOutput('output_row_splits')) # predicted_final_1 doesn't matter results = triton_client.infer( model_name=model_name, inputs=inputs, outputs=outputs ) condensates = results.as_numpy('output') #condensates = results.as_numpy('predicted_final_condensates') #rs = results.as_numpy('output_row_splits') #print('output',condensates,condensates.shape) return condensates
def main(_): """ Ask a question of context on Triton. :param context: str :param question: str :param question_id: int :return: """ os.environ[ "TF_XLA_FLAGS"] = "--tf_xla_enable_lazy_compilation=false" #causes memory fragmentation for bert leading to OOM tf.compat.v1.logging.info("***** Configuaration *****") for key in FLAGS.__flags.keys(): tf.compat.v1.logging.info(' {}: {}'.format(key, getattr(FLAGS, key))) tf.compat.v1.logging.info("**************************") tokenizer = tokenization.FullTokenizer(vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) # Get the Data if FLAGS.question and FLAGS.context: input_data = [{ "paragraphs": [{ "context": FLAGS.context, "qas": [{ "id": 0, "question": FLAGS.question }] }] }] eval_examples = read_squad_examples( input_file=None, is_training=False, version_2_with_negative=FLAGS.version_2_with_negative, input_data=input_data) elif FLAGS.predict_file: eval_examples = read_squad_examples( input_file=FLAGS.predict_file, is_training=False, version_2_with_negative=FLAGS.version_2_with_negative) else: raise ValueError( "Either predict_file or question+answer need to defined") # Get Eval Features = Preprocessing eval_features = [] def append_feature(feature): eval_features.append(feature) convert_examples_to_features(examples=eval_examples, tokenizer=tokenizer, max_seq_length=FLAGS.max_seq_length, doc_stride=FLAGS.doc_stride, max_query_length=FLAGS.max_query_length, is_training=False, output_fn=append_feature) protocol_str = 'grpc' # http or grpc url = FLAGS.triton_server_url verbose = False model_name = FLAGS.triton_model_name model_version = str(FLAGS.triton_model_version) batch_size = FLAGS.predict_batch_size triton_client = tritongrpcclient.InferenceServerClient(url, verbose) model_metadata = triton_client.get_model_metadata( model_name=model_name, model_version=model_version) model_config = triton_client.get_model_config(model_name=model_name, model_version=model_version) user_data = UserData() max_outstanding = 20 # Number of outstanding requests outstanding = 0 sent_prog = tqdm.tqdm(desc="Send Requests", total=len(eval_features)) recv_prog = tqdm.tqdm(desc="Recv Requests", total=len(eval_features)) def process_outstanding(do_wait, outstanding): if (outstanding == 0 or do_wait is False): return outstanding # Wait for deferred items from callback functions (result, error, idx, start_time, inputs) = user_data._completed_requests.get() if (result is None): return outstanding stop = time.time() if (error is not None): raise ValueError( "Context returned null for async id marked as done") outstanding -= 1 time_list.append(stop - start_time) batch_count = len(inputs[label_id_key]) if FLAGS.trt_engine: cls_squad_logits = result.as_numpy("cls_squad_logits") try: #when batch size > 1 start_logits_results = np.array( cls_squad_logits.squeeze()[:, :, 0]) end_logits_results = np.array(cls_squad_logits.squeeze()[:, :, 1]) except: start_logits_results = np.expand_dims(np.array( cls_squad_logits.squeeze()[:, 0]), axis=0) end_logits_results = np.expand_dims(np.array( cls_squad_logits.squeeze()[:, 1]), axis=0) else: start_logits_results = result.as_numpy("start_logits") end_logits_results = result.as_numpy("end_logits") for i in range(batch_count): unique_id = int(inputs[label_id_key][i][0]) start_logits = [float(x) for x in start_logits_results[i].flat] end_logits = [float(x) for x in end_logits_results[i].flat] all_results.append( RawResult(unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) recv_prog.update(n=batch_count) return outstanding all_results = [] time_list = [] print("Starting Sending Requests....\n") all_results_start = time.time() idx = 0 for inputs_dict in batch(eval_features, batch_size): present_batch_size = len(inputs_dict[label_id_key]) if not FLAGS.trt_engine: label_ids_data = np.stack(inputs_dict[label_id_key]) input_ids_data = np.stack(inputs_dict['input_ids']) input_mask_data = np.stack(inputs_dict['input_mask']) segment_ids_data = np.stack(inputs_dict['segment_ids']) inputs = [] inputs.append( tritongrpcclient.InferInput('input_ids', input_ids_data.shape, "INT32")) inputs[0].set_data_from_numpy(input_ids_data) inputs.append( tritongrpcclient.InferInput('input_mask', input_mask_data.shape, "INT32")) inputs[1].set_data_from_numpy(input_mask_data) inputs.append( tritongrpcclient.InferInput('segment_ids', segment_ids_data.shape, "INT32")) inputs[2].set_data_from_numpy(segment_ids_data) if not FLAGS.trt_engine: inputs.append( tritongrpcclient.InferInput(label_id_key, label_ids_data.shape, "INT32")) inputs[3].set_data_from_numpy(label_ids_data) outputs = [] if FLAGS.trt_engine: outputs.append( tritongrpcclient.InferRequestedOutput('cls_squad_logits')) else: outputs.append( tritongrpcclient.InferRequestedOutput('start_logits')) outputs.append(tritongrpcclient.InferRequestedOutput('end_logits')) start_time = time.time() triton_client.async_infer(model_name, inputs, partial(completion_callback, user_data, idx, start_time, inputs_dict), request_id=str(idx), model_version=model_version, outputs=outputs) outstanding += 1 idx += 1 sent_prog.update(n=present_batch_size) # Try to process at least one response per request outstanding = process_outstanding(outstanding >= max_outstanding, outstanding) tqdm.tqdm.write( "All Requests Sent! Waiting for responses. Outstanding: {}.\n".format( outstanding)) # Now process all outstanding requests while (outstanding > 0): outstanding = process_outstanding(True, outstanding) all_results_end = time.time() all_results_total = (all_results_end - all_results_start) * 1000.0 print("-----------------------------") print("Total Time: {} ms".format(all_results_total)) print("-----------------------------") print("-----------------------------") print("Total Inference Time = %0.2f for" "Sentences processed = %d" % (sum(time_list), len(eval_features))) print("Throughput Average (sentences/sec) = %0.2f" % (len(eval_features) / all_results_total * 1000.0)) print("-----------------------------") if FLAGS.output_dir and FLAGS.predict_file: # When inferencing on a dataset, get inference statistics and write results to json file time_list.sort() avg = np.mean(time_list) cf_95 = max(time_list[:int(len(time_list) * 0.95)]) cf_99 = max(time_list[:int(len(time_list) * 0.99)]) cf_100 = max(time_list[:int(len(time_list) * 1)]) print("-----------------------------") print("Summary Statistics") print("Batch size =", FLAGS.predict_batch_size) print("Sequence Length =", FLAGS.max_seq_length) print("Latency Confidence Level 95 (ms) =", cf_95 * 1000) print("Latency Confidence Level 99 (ms) =", cf_99 * 1000) print("Latency Confidence Level 100 (ms) =", cf_100 * 1000) print("Latency Average (ms) =", avg * 1000) print("-----------------------------") output_prediction_file = os.path.join(FLAGS.output_dir, "predictions.json") output_nbest_file = os.path.join(FLAGS.output_dir, "nbest_predictions.json") output_null_log_odds_file = os.path.join(FLAGS.output_dir, "null_odds.json") write_predictions(eval_examples, eval_features, all_results, FLAGS.n_best_size, FLAGS.max_answer_length, FLAGS.do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, FLAGS.version_2_with_negative, FLAGS.verbose_logging) else: # When inferencing on a single example, write best answer to stdout all_predictions, all_nbest_json, scores_diff_json = get_predictions( eval_examples, eval_features, all_results, FLAGS.n_best_size, FLAGS.max_answer_length, FLAGS.do_lower_case, FLAGS.version_2_with_negative, FLAGS.verbose_logging) print( "Context is: %s \n\nQuestion is: %s \n\nPredicted Answer is: %s" % (FLAGS.context, FLAGS.question, all_predictions[0]))
# Set the input data inputs = [] if FLAGS.protocol.lower() == "grpc": inputs.append( tritongrpcclient.InferInput(input_name, batched_image_data.shape, "BYTES")) inputs[0].set_data_from_numpy(batched_image_data) else: inputs.append( tritonhttpclient.InferInput(input_name, batched_image_data.shape, "BYTES")) inputs[0].set_data_from_numpy(batched_image_data, binary_data=True) outputs = [] if FLAGS.protocol.lower() == "grpc": outputs.append( tritongrpcclient.InferRequestedOutput(output_name, class_count=FLAGS.classes)) else: outputs.append( tritonhttpclient.InferRequestedOutput(output_name, binary_data=True, class_count=FLAGS.classes)) # Send request result = triton_client.infer(model_name, inputs, outputs=outputs) postprocess(result, output_name, input_filenames, batch_size) print("PASS")
"input0_data", cudashm.get_raw_handle(shm_ip0_handle), 0, input_byte_size) triton_client.register_cuda_shared_memory( "input1_data", cudashm.get_raw_handle(shm_ip1_handle), 0, input_byte_size) # Set the parameters to use data from shared memory inputs = [] inputs.append(tritongrpcclient.InferInput('INPUT0', [1, 16], "INT32")) inputs[-1].set_shared_memory("input0_data", input_byte_size) inputs.append(tritongrpcclient.InferInput('INPUT1', [1, 16], "INT32")) inputs[-1].set_shared_memory("input1_data", input_byte_size) outputs = [] outputs.append(tritongrpcclient.InferRequestedOutput('OUTPUT0')) outputs[-1].set_shared_memory("output0_data", output_byte_size) outputs.append(tritongrpcclient.InferRequestedOutput('OUTPUT1')) outputs[-1].set_shared_memory("output1_data", output_byte_size) results = triton_client.infer(model_name=model_name, inputs=inputs, outputs=outputs) # Read results from the shared memory. output0 = results.get_output("OUTPUT0") if output0 is not None: output0_data = cudashm.get_contents_as_numpy( shm_op0_handle, utils.triton_to_np_dtype(output0.datatype), output0.shape)
# Infer inputs = [] outputs = [] # the built engine with input NCHW inputs.append(tritongrpcclient.InferInput("data", [1, 3, 608, 608], "FP32")) # Initialize the data image_obj = Image("image_id", raw_image_path=FLAGS.img) ori_w, ori_h = image_obj.pil_image_obj.size image_frame, scale_ratio = preprocess(image_obj.pil_image_obj, input_image_shape=(608, 608)) inputs[0].set_data_from_numpy(image_frame) outputs.append(tritongrpcclient.InferRequestedOutput("prob")) # Test with outputs results = triton_client.infer(model_name=model_name, inputs=inputs, outputs=outputs, headers={"test": "1"}) statistics = triton_client.get_inference_statistics(model_name=model_name) print(statistics) # Get the output arrays from the results output0_data = results.as_numpy("prob") n_bbox = int(output0_data[0, 0, 0, 0]) bbox_matrix = output0_data[0, 1:(n_bbox * 7 + 1), 0, 0].reshape(-1, 7)
def infer_exact(tester, pf, tensor_shape, batch_size, input_dtype, output0_dtype, output1_dtype, output0_raw=True, output1_raw=True, model_version=None, swap=False, outputs=("OUTPUT0", "OUTPUT1"), use_http=True, use_grpc=True, use_http_json_tensors=True, skip_request_id_check=False, use_streaming=True, correlation_id=0, shm_region_names=None, precreated_shm_regions=None, use_system_shared_memory=False, use_cuda_shared_memory=False, priority=0, timeout_us=0): tester.assertTrue( use_http or use_http_json_tensors or use_grpc or use_streaming) configs = [] if use_http: configs.append(("localhost:8000", "http", False, True)) if output0_raw == output1_raw: # Float16 not supported for Input and Output via JSON if use_http_json_tensors and (input_dtype != np.float16) and \ (output0_dtype != np.float16) and (output1_dtype != np.float16): configs.append(("localhost:8000", "http", False, False)) if use_grpc: configs.append(("localhost:8001", "grpc", False, False)) if use_streaming: configs.append(("localhost:8001", "grpc", True, False)) # outputs are sum and difference of inputs so set max input # values so that they will not overflow the output. This # allows us to do an exact match. For float types use 8, 16, # 32 int range for fp 16, 32, 64 respectively. When getting # class outputs the result value/probability is returned as a # float so must use fp32 range in that case. rinput_dtype = _range_repr_dtype(input_dtype) routput0_dtype = _range_repr_dtype( output0_dtype if output0_raw else np.float32) routput1_dtype = _range_repr_dtype( output1_dtype if output1_raw else np.float32) val_min = max(np.iinfo(rinput_dtype).min, np.iinfo(routput0_dtype).min, np.iinfo(routput1_dtype).min) / 2 val_max = min(np.iinfo(rinput_dtype).max, np.iinfo(routput0_dtype).max, np.iinfo(routput1_dtype).max) / 2 num_classes = 3 input0_array = np.random.randint(low=val_min, high=val_max, size=tensor_shape, dtype=rinput_dtype) input1_array = np.random.randint(low=val_min, high=val_max, size=tensor_shape, dtype=rinput_dtype) if input_dtype != np.object: input0_array = input0_array.astype(input_dtype) input1_array = input1_array.astype(input_dtype) if not swap: output0_array = input0_array + input1_array output1_array = input0_array - input1_array else: output0_array = input0_array - input1_array output1_array = input0_array + input1_array if output0_dtype == np.object: output0_array = np.array([unicode(str(x), encoding='utf-8') for x in (output0_array.flatten())], dtype=object).reshape(output0_array.shape) else: output0_array = output0_array.astype(output0_dtype) if output1_dtype == np.object: output1_array = np.array([unicode(str(x), encoding='utf-8') for x in (output1_array.flatten())], dtype=object).reshape(output1_array.shape) else: output1_array = output1_array.astype(output1_dtype) if input_dtype == np.object: in0n = np.array([str(x) for x in input0_array.reshape(input0_array.size)], dtype=object) input0_array = in0n.reshape(input0_array.shape) in1n = np.array([str(x) for x in input1_array.reshape(input1_array.size)], dtype=object) input1_array = in1n.reshape(input1_array.shape) # prepend size of string to output string data if output0_dtype == np.object: if batch_size == 1: output0_array_tmp = serialize_byte_tensor_list([output0_array]) else: output0_array_tmp = serialize_byte_tensor_list(output0_array) else: output0_array_tmp = output0_array if output1_dtype == np.object: if batch_size == 1: output1_array_tmp = serialize_byte_tensor_list([output1_array]) else: output1_array_tmp = serialize_byte_tensor_list(output1_array) else: output1_array_tmp = output1_array OUTPUT0 = "OUTPUT0" OUTPUT1 = "OUTPUT1" INPUT0 = "INPUT0" INPUT1 = "INPUT1" if pf == "libtorch" or pf == "libtorch_nobatch": OUTPUT0 = "OUTPUT__0" OUTPUT1 = "OUTPUT__1" INPUT0 = "INPUT__0" INPUT1 = "INPUT__1" output0_byte_size = sum([o0.nbytes for o0 in output0_array_tmp]) output1_byte_size = sum([o1.nbytes for o1 in output1_array_tmp]) if batch_size == 1: input0_list = [input0_array] input1_list = [input1_array] else: input0_list = [x for x in input0_array] input1_list = [x for x in input1_array] # Serialization of string tensors in the case of shared memory must be done manually if input_dtype == np.object: input0_list_tmp = serialize_byte_tensor_list(input0_list) input1_list_tmp = serialize_byte_tensor_list(input1_list) else: input0_list_tmp = input0_list input1_list_tmp = input1_list input0_byte_size = sum([i0.nbytes for i0 in input0_list_tmp]) input1_byte_size = sum([i1.nbytes for i1 in input1_list_tmp]) # Create system/cuda shared memory regions if needed shm_regions, shm_handles = su.create_set_shm_regions(input0_list_tmp, input1_list_tmp, output0_byte_size, output1_byte_size, outputs, shm_region_names, precreated_shm_regions, use_system_shared_memory, use_cuda_shared_memory) if model_version is not None: model_version = str(model_version) else: model_version = "" # Run inference and check results for each config for config in configs: model_name = tu.get_model_name( pf, input_dtype, output0_dtype, output1_dtype) if config[1] == "http": triton_client = httpclient.InferenceServerClient( config[0], verbose=True) else: triton_client = grpcclient.InferenceServerClient( config[0], verbose=True) inputs = [] if config[1] == "http": inputs.append(httpclient.InferInput( INPUT0, tensor_shape, np_to_triton_dtype(input_dtype))) inputs.append(httpclient.InferInput( INPUT1, tensor_shape, np_to_triton_dtype(input_dtype))) else: inputs.append(grpcclient.InferInput( INPUT0, tensor_shape, np_to_triton_dtype(input_dtype))) inputs.append(grpcclient.InferInput( INPUT1, tensor_shape, np_to_triton_dtype(input_dtype))) if not (use_cuda_shared_memory or use_system_shared_memory): if config[1] == "http": inputs[0].set_data_from_numpy( input0_array, binary_data=config[3]) inputs[1].set_data_from_numpy( input1_array, binary_data=config[3]) else: inputs[0].set_data_from_numpy(input0_array) inputs[1].set_data_from_numpy(input1_array) else: # Register necessary shared memory regions/handles su.register_add_shm_regions(inputs, outputs, shm_regions, precreated_shm_regions, shm_handles, input0_byte_size, input1_byte_size, output0_byte_size, output1_byte_size, use_system_shared_memory, use_cuda_shared_memory, triton_client) if batch_size == 1: expected0_sort_idx = [np.flip(np.argsort(x.flatten()), 0) for x in output0_array.reshape((1,) + tensor_shape)] expected1_sort_idx = [np.flip(np.argsort(x.flatten()), 0) for x in output1_array.reshape((1,) + tensor_shape)] else: expected0_sort_idx = [np.flip(np.argsort(x.flatten()), 0) for x in output0_array.reshape(tensor_shape)] expected1_sort_idx = [np.flip(np.argsort(x.flatten()), 0) for x in output1_array.reshape(tensor_shape)] # Force binary_data = False for shared memory and class output_req = [] i = 0 if "OUTPUT0" in outputs: if len(shm_regions) != 0: if config[1] == "http": output_req.append(httpclient.InferRequestedOutput( OUTPUT0, binary_data=config[3])) else: output_req.append(grpcclient.InferRequestedOutput(OUTPUT0)) output_req[-1].set_shared_memory( shm_regions[2]+'_data', output0_byte_size) else: if output0_raw: if config[1] == "http": output_req.append(httpclient.InferRequestedOutput( OUTPUT0, binary_data=config[3])) else: output_req.append( grpcclient.InferRequestedOutput(OUTPUT0)) else: if config[1] == "http": output_req.append(httpclient.InferRequestedOutput( OUTPUT0, binary_data=config[3], class_count=num_classes)) else: output_req.append(grpcclient.InferRequestedOutput( OUTPUT0, class_count=num_classes)) i += 1 if "OUTPUT1" in outputs: if len(shm_regions) != 0: if config[1] == "http": output_req.append(httpclient.InferRequestedOutput( OUTPUT1, binary_data=config[3])) else: output_req.append(grpcclient.InferRequestedOutput(OUTPUT1)) output_req[-1].set_shared_memory( shm_regions[2+i]+'_data', output1_byte_size) else: if output1_raw: if config[1] == "http": output_req.append(httpclient.InferRequestedOutput( OUTPUT1, binary_data=config[3])) else: output_req.append( grpcclient.InferRequestedOutput(OUTPUT1)) else: if config[1] == "http": output_req.append(httpclient.InferRequestedOutput( OUTPUT1, binary_data=config[3], class_count=num_classes)) else: output_req.append(grpcclient.InferRequestedOutput( OUTPUT1, class_count=num_classes)) if config[2]: user_data = UserData() triton_client.start_stream(partial(completion_callback, user_data)) try: results = triton_client.async_stream_infer(model_name, inputs, model_version=model_version, outputs=output_req, request_id=str(_unique_request_id())) except Exception as e: triton_client.stop_stream() raise e triton_client.stop_stream() (results, error) = user_data._completed_requests.get() if error is not None: raise error else: results = triton_client.infer(model_name, inputs, model_version=model_version, outputs=output_req, request_id=str(_unique_request_id())) last_response = results.get_response() if not skip_request_id_check: global _seen_request_ids if config[1] == "http": request_id = int(last_response["id"]) else: request_id = int(last_response.id) tester.assertFalse(request_id in _seen_request_ids, "request_id: {}".format(request_id)) _seen_request_ids.add(request_id) if config[1] == "http": response_model_name = last_response["model_name"] if model_version != "": response_model_version = last_response["model_version"] response_outputs = last_response["outputs"] else: response_model_name = last_response.model_name if model_version != "": response_model_version = last_response.model_version response_outputs = last_response.outputs tester.assertEqual(response_model_name, model_name) if model_version != "": tester.assertEqual(str(response_model_version), model_version) tester.assertEqual(len(response_outputs), len(outputs)) for result in response_outputs: if config[1] == "http": result_name = result["name"] else: result_name = result.name if ((result_name == OUTPUT0 and output0_raw) or (result_name == OUTPUT1 and output1_raw)): if use_system_shared_memory or use_cuda_shared_memory: if result_name == OUTPUT0: shm_handle = shm_handles[2] else: shm_handle = shm_handles[3] output = results.get_output(result_name) if config[1] == "http": output_datatype = output['datatype'] output_shape = output['shape'] else: output_datatype = output.datatype output_shape = output.shape output_dtype = triton_to_np_dtype(output_datatype) if use_system_shared_memory: output_data = shm.get_contents_as_numpy( shm_handle, output_dtype, output_shape) elif use_cuda_shared_memory: output_data = cudashm.get_contents_as_numpy( shm_handle, output_dtype, output_shape) else: output_data = results.as_numpy(result_name) if (output_data.dtype == np.object) and (config[3] == False): output_data = output_data.astype(np.bytes_) if result_name == OUTPUT0: tester.assertTrue(np.array_equal(output_data, output0_array), "{}, {} expected: {}, got {}".format( model_name, OUTPUT0, output0_array, output_data)) elif result_name == OUTPUT1: tester.assertTrue(np.array_equal(output_data, output1_array), "{}, {} expected: {}, got {}".format( model_name, OUTPUT1, output1_array, output_data)) else: tester.assertTrue( False, "unexpected raw result {}".format(result_name)) else: for b in range(batch_size): # num_classes values must be returned and must # match expected top values if "nobatch" in pf: class_list = results.as_numpy(result_name) else: class_list = results.as_numpy(result_name)[b] tester.assertEqual(len(class_list), num_classes) if batch_size == 1: expected0_flatten = output0_array.flatten() expected1_flatten = output1_array.flatten() else: expected0_flatten = output0_array[b].flatten() expected1_flatten = output1_array[b].flatten() for idx, class_label in enumerate(class_list): # can't compare indices since could have different # indices with the same value/prob, so check that # the value of each index equals the expected value. # Only compare labels when the indices are equal. if type(class_label) == str: ctuple = class_label.split(':') else: ctuple = "".join(chr(x) for x in class_label).split(':') cval = float(ctuple[0]) cidx = int(ctuple[1]) if result_name == OUTPUT0: tester.assertEqual(cval, expected0_flatten[cidx]) tester.assertEqual( cval, expected0_flatten[expected0_sort_idx[b][idx]]) if cidx == expected0_sort_idx[b][idx]: tester.assertEqual(ctuple[2], 'label{}'.format( expected0_sort_idx[b][idx])) elif result_name == OUTPUT1: tester.assertEqual(cval, expected1_flatten[cidx]) tester.assertEqual( cval, expected1_flatten[expected1_sort_idx[b][idx]]) else: tester.assertTrue( False, "unexpected class result {}".format(result_name)) # Unregister system/cuda shared memory regions if they exist su.unregister_cleanup_shm_regions(shm_regions, shm_handles, precreated_shm_regions, outputs, use_system_shared_memory, use_cuda_shared_memory) return results
def infer_zero(tester, pf, batch_size, tensor_dtype, input_shapes, output_shapes, model_version=None, use_http=True, use_grpc=True, use_http_json_tensors=True, use_streaming=True, shm_region_name_prefix=None, use_system_shared_memory=False, use_cuda_shared_memory=False, priority=0, timeout_us=0): tester.assertTrue( use_http or use_grpc or use_http_json_tensors or use_streaming) configs = [] if use_http: configs.append(("localhost:8000", "http", False, True)) if use_http_json_tensors and (tensor_dtype != np.float16): configs.append(("localhost:8000", "http", False, False)) if use_grpc: configs.append(("localhost:8001", "grpc", False, False)) if use_streaming: configs.append(("localhost:8001", "grpc", True, False)) tester.assertEqual(len(input_shapes), len(output_shapes)) io_cnt = len(input_shapes) if shm_region_name_prefix is None: shm_region_name_prefix = ["input", "output"] input_dict = {} expected_dict = {} shm_ip_handles = list() shm_op_handles = list() for io_num in range(io_cnt): if pf == "libtorch" or pf == "libtorch_nobatch": input_name = "INPUT__{}".format(io_num) output_name = "OUTPUT__{}".format(io_num) else: input_name = "INPUT{}".format(io_num) output_name = "OUTPUT{}".format(io_num) input_shape = input_shapes[io_num] output_shape = output_shapes[io_num] rtensor_dtype = _range_repr_dtype(tensor_dtype) if (rtensor_dtype != np.bool): input_array = np.random.randint(low=np.iinfo(rtensor_dtype).min, high=np.iinfo(rtensor_dtype).max, size=input_shape, dtype=rtensor_dtype) else: input_array = np.random.choice(a=[False, True], size=input_shape) if tensor_dtype != np.object: input_array = input_array.astype(tensor_dtype) expected_array = np.ndarray.copy(input_array) else: expected_array = np.array([unicode(str(x), encoding='utf-8') for x in input_array.flatten()], dtype=object) input_array = np.array([str(x) for x in input_array.flatten()], dtype=object).reshape(input_array.shape) expected_array = expected_array.reshape(output_shape) expected_dict[output_name] = expected_array output_byte_size = expected_array.nbytes if batch_size == 1: input_list = [input_array] else: input_list = [x for x in input_array] # Serialization of string tensors in the case of shared memory must be done manually if tensor_dtype == np.object: input_list_tmp = serialize_byte_tensor_list(input_list) else: input_list_tmp = input_list input_byte_size = sum([ip.nbytes for ip in input_list_tmp]) # create and register shared memory region for inputs and outputs shm_io_handles = su.create_set_either_shm_region([shm_region_name_prefix[0]+str(io_num), shm_region_name_prefix[1]+str(io_num)], input_list_tmp, input_byte_size, output_byte_size, use_system_shared_memory, use_cuda_shared_memory) if len(shm_io_handles) != 0: shm_ip_handles.append(shm_io_handles[0]) shm_op_handles.append(shm_io_handles[1]) input_dict[input_name] = input_array if model_version is not None: model_version = str(model_version) else: model_version = "" # Run inference and check results for each config for config in configs: model_name = tu.get_zero_model_name(pf, io_cnt, tensor_dtype) if config[1] == "http": triton_client = httpclient.InferenceServerClient( config[0], verbose=True) else: triton_client = grpcclient.InferenceServerClient( config[0], verbose=True) inputs = [] output_req = [] for io_num, (input_name, output_name) in enumerate(zip(input_dict.keys(), expected_dict.keys())): input_data = input_dict[input_name] input_byte_size = input_data.nbytes output_byte_size = expected_dict[output_name].nbytes if config[1] == "http": inputs.append(httpclient.InferInput( input_name, input_data.shape, np_to_triton_dtype(tensor_dtype))) output_req.append(httpclient.InferRequestedOutput( output_name, binary_data=config[3])) else: inputs.append(grpcclient.InferInput( input_name, input_data.shape, np_to_triton_dtype(tensor_dtype))) output_req.append( grpcclient.InferRequestedOutput(output_name)) if not (use_cuda_shared_memory or use_system_shared_memory): if config[1] == "http": inputs[-1].set_data_from_numpy(input_data, binary_data=config[3]) else: inputs[-1].set_data_from_numpy(input_data) else: # Register necessary shared memory regions/handles su.register_add_either_shm_regions(inputs, output_req, shm_region_name_prefix, (shm_ip_handles, shm_op_handles), io_num, input_byte_size, output_byte_size, use_system_shared_memory, use_cuda_shared_memory, triton_client) if config[2]: user_data = UserData() triton_client.start_stream(partial(completion_callback, user_data)) try: results = triton_client.async_stream_infer(model_name, inputs, model_version=model_version, outputs=output_req, request_id=str(_unique_request_id()), priority=priority, timeout=timeout_us) except Exception as e: triton_client.stop_stream() raise e triton_client.stop_stream() (results, error) = user_data._completed_requests.get() if error is not None: raise error else: results = triton_client.infer(model_name, inputs, model_version=model_version, outputs=output_req, request_id=str(_unique_request_id()), priority=priority, timeout=timeout_us) last_response = results.get_response() if config[1] == "http": response_model_name = last_response["model_name"] if model_version != "": response_model_version = last_response["model_version"] response_outputs = last_response["outputs"] else: response_model_name = last_response.model_name if model_version != "": response_model_version = last_response.model_version response_outputs = last_response.outputs tester.assertEqual(response_model_name, model_name) if model_version != "": tester.assertEqual(response_model_version, model_version) tester.assertEqual(len(response_outputs), io_cnt) for result in response_outputs: if config[1] == "http": result_name = result["name"] else: result_name = result.name tester.assertTrue(result_name in expected_dict) if use_system_shared_memory or use_cuda_shared_memory: if pf == "libtorch" or pf == "libtorch_nobatch": io_num = int(result_name.split("OUTPUT__")[1]) else: io_num = int(result_name.split("OUTPUT")[1]) shm_handle = shm_op_handles[io_num] output = results.get_output(result_name) if config[1] == "http": output_datatype = output['datatype'] output_shape = output['shape'] else: output_datatype = output.datatype output_shape = output.shape output_dtype = triton_to_np_dtype(output_datatype) if use_system_shared_memory: output_data = shm.get_contents_as_numpy( shm_handle, output_dtype, output_shape) elif use_cuda_shared_memory: output_data = cudashm.get_contents_as_numpy( shm_handle, output_dtype, output_shape) else: output_data = results.as_numpy(result_name) if (output_data.dtype == np.object) and (config[3] == False): output_data = output_data.astype(np.bytes_) expected = expected_dict[result_name] tester.assertEqual(output_data.shape, expected.shape) tester.assertTrue(np.array_equal(output_data, expected), "{}, {}, expected: {}, got {}".format( model_name, result_name, expected, output_data)) if len(shm_ip_handles) != 0: for io_num in range(io_cnt): if use_cuda_shared_memory: triton_client.unregister_cuda_shared_memory( shm_region_name_prefix[0]+str(io_num)+'_data') triton_client.unregister_cuda_shared_memory( shm_region_name_prefix[0]+str(io_num)+'_data') cudashm.destroy_shared_memory_region(shm_ip_handles[io_num]) cudashm.destroy_shared_memory_region(shm_op_handles[io_num]) else: triton_client.unregister_system_shared_memory( shm_region_name_prefix[1]+str(io_num)+'_data') triton_client.unregister_system_shared_memory( shm_region_name_prefix[1]+str(io_num)+'_data') shm.destroy_shared_memory_region(shm_ip_handles[io_num]) shm.destroy_shared_memory_region(shm_op_handles[io_num]) return results
print("channel creation failed: " + str(e)) sys.exit(1) with open(args.label_file) as f: labels_dict = {idx: line.strip() for idx, line in enumerate(f)} inputs = [] outputs = [] input_name = "INPUT" output_name = "OUTPUT" image_data = load_image(args.image) image_data = np.expand_dims(image_data, axis=0) inputs.append( tritongrpcclient.InferInput(input_name, image_data.shape, "UINT8")) outputs.append(tritongrpcclient.InferRequestedOutput(output_name)) inputs[0].set_data_from_numpy(image_data) start_time = time.time() # Test with outputs results = triton_client.infer(model_name=args.model_name, inputs=inputs, outputs=outputs) latency = time.time() - start_time output0_data = results.as_numpy(output_name) maxs = np.argmax(output0_data, axis=1) print("{}ms class: {}".format(latency, labels_dict[maxs[0]]))
edge_index = build_edge_index(x.shape[0], data['Ri_rows'], data['Ri_cols'], data['Ro_rows'], data['Ro_cols']) print(x.shape, edge_index.shape) nnodes = x.shape[0] nedges = edge_index.shape[1] inputs.append(tritongrpcclient.InferInput('x__0', [nnodes, 5], 'FP32')) inputs.append( tritongrpcclient.InferInput('edge_index__1', [2, nedges], "INT64")) inputs[0].set_data_from_numpy(x) inputs[1].set_data_from_numpy(edge_index) outputs.append(tritongrpcclient.InferRequestedOutput('output__0')) results = triton_client.infer(model_name=model_name, inputs=inputs, outputs=outputs) output0_data = results.as_numpy('output__0') print(output0_data) del output0_data statistics = triton_client.get_inference_statistics(model_name=model_name) print(statistics) if len(statistics.model_stats) != 1: print("FAILED: Inference Statistics") sys.exit(1) print('PASS: infer')