def train_and_save_mnist_model(experiment_path, triggered_train, clean_test, triggered_test, model_save_dir, parallel, use_gpu): logger.info("Training Model...") def img_transform(x): return x.unsqueeze(0) logging_params = { 'num_batches_per_logmsg': 500, 'tensorboard_output_dir': 'tensorboard_dir/', 'experiment_name': 'badnets', 'num_batches_per_metrics': 500, 'num_epochs_per_metric': 10 } logging_cfg = tpmc.ReportingConfig( num_batches_per_logmsg=logging_params['num_batches_per_logmsg'], tensorboard_output_dir=logging_params['tensorboard_output_dir'], experiment_name=logging_params['experiment_name'], num_batches_per_metrics=logging_params['num_batches_per_metrics'], num_epochs_per_metric=logging_params['num_epochs_per_metric']) # Train clean model to use as a base for triggered model device = torch.device('cuda' if use_gpu else 'cpu') num_avail_cpus = multiprocessing.cpu_count() num_cpus_to_use = int(.8 * num_avail_cpus) data_obj = tpm_tdm.DataManager( experiment_path, triggered_train, clean_test, triggered_test_file=triggered_test, train_data_transform=img_transform, test_data_transform=img_transform, shuffle_train=True, train_dataloader_kwargs={'num_workers': num_cpus_to_use}) class MyArchFactory(tpm_af.ArchitectureFactory): def new_architecture(self): return tpma.ModdedLeNet5Net() training_cfg = tpmc.TrainingConfig( device=device, epochs=300, batch_size=20, lr=1e-4, early_stopping=tpmc.EarlyStoppingConfig()) optim_cfg = tpmc.DefaultOptimizerConfig(training_cfg, logging_cfg) optim = tpm_do.DefaultOptimizer(optim_cfg) model_filename = 'ModdedLeNet5_0.2_poison.pt' cfg = tpmc.RunnerConfig(MyArchFactory(), data_obj, optimizer=optim, model_save_dir=model_save_dir, stats_save_dir=model_save_dir, filename=model_filename, parallel=parallel) runner = tpmr.Runner(cfg, {'script': 'gen_and_train_mnist.py'}) runner.run()
def train_and_save_mnist_model(experiment_path, clean_train, triggered_train, clean_test, triggered_test, model_save_dir, parallel, use_gpu): logger.info("Training Model...") def img_transform(x): return x.unsqueeze(0) logging_params = { 'num_batches_per_logmsg': 500, 'tensorboard_output_dir': 'tensorboard_dir/', 'experiment_name': 'badnets', 'num_batches_per_metrics': 500, 'num_batches_ver_val_dataset_metrics': None, 'num_epochs_per_metric': 10 } logging_cfg = tpmc.ReportingConfig(num_batches_per_logmsg=logging_params['num_batches_per_logmsg'], tensorboard_output_dir=logging_params['tensorboard_output_dir'], experiment_name=logging_params['experiment_name'], num_batches_per_metrics=logging_params['num_batches_per_metrics'], num_batches_ver_val_dataset_metrics=logging_params[ 'num_batches_ver_val_dataset_metrics'], num_epochs_per_metric=logging_params['num_epochs_per_metric']) # Train clean model to use as a base for triggered model device = torch.device('cuda' if use_gpu else 'cpu') data_obj = tpm_tdm.DataManager(experiment_path, [clean_train, triggered_train], clean_test, triggered_test_file=triggered_test, data_transform=img_transform, shuffle_train=True) class MyArchFactory(tpm_af.ArchitectureFactory): def new_architecture(self): return tpma.BadNetExample() clean_training_cfg = tpmc.TrainingConfig(device=device, epochs=10, batch_size=100, lr=1e-4) clean_optim_cfg = tpmc.DefaultOptimizerConfig(clean_training_cfg, logging_cfg) clean_optim = tpm_do.DefaultOptimizer(clean_optim_cfg) triggered_training_cfg = tpmc.TrainingConfig(device=device, epochs=200, batch_size=15, lr=1e-4) triggered_optim_cfg = tpmc.DefaultOptimizerConfig(triggered_training_cfg, logging_cfg) triggered_optim = tpm_do.DefaultOptimizer(triggered_optim_cfg) optims = [clean_optim, triggered_optim] model_filename = 'BadNets_0.2_poison_sequential.pt' cfg = tpmc.RunnerConfig(MyArchFactory(), data_obj, optimizer=optims, model_save_dir=model_save_dir, stats_save_dir=model_save_dir, filename=model_filename, parallel=parallel) runner = tpmr.Runner(cfg, {'script': 'gen_and_train_mnist_sequential.py'}) runner.run()
default_nbpvdm = None if device.type == 'cpu' else 500 early_stopping_argin = tpmc.EarlyStoppingConfig( ) if a.early_stopping else None training_params = tpmc.TrainingConfig( device=device, epochs=a.num_epochs, batch_size=32, lr=0.001, optim='adam', objective='cross_entropy_loss', early_stopping=early_stopping_argin, train_val_split=a.train_val_split) reporting_params = tpmc.ReportingConfig( num_batches_per_logmsg=500, num_epochs_per_metric=1, num_batches_per_metrics=default_nbpvdm, tensorboard_output_dir=a.tensorboard_dir, experiment_name=experiment_cfg['name']) optimizer_cfg = tpmc.DefaultOptimizerConfig(training_params, reporting_params) cfg = tpmc.ModelGeneratorConfig(arch, data_obj, model_save_dir, stats_save_dir, num_models, optimizer=optimizer_cfg, experiment_cfg=experiment_cfg, parallel=True) # may also provide lists of run_ids or filenames are arguments to ModelGeneratorConfig to have more control # of saved model file names; see RunnerConfig and ModelGeneratorConfig for more information
def test_reporting_config_copy(self): r1 = tpmc.ReportingConfig() r2 = copy.deepcopy(r1) self.assertEqual(r1, r2)
def train_models(top_dir, data_folder, experiment_folder, experiment_list, model_save_folder, stats_save_folder, early_stopping, train_val_split, tensorboard_dir, gpu, uge, uge_dir): """ Given paths to the experiments and specifications to where models and model statistics should be saved, create triggered models for each experiment in the experiment directory. :param top_dir: (str) path to top level directory for text classification data and models are to be stored :param data_folder: (str) name of folder containing the experiments folder :param experiment_folder: (str) name of folder containing the experiments used to generate models :param model_save_folder: (str) name of folder under which models are to be saved :param stats_save_folder: (str) name of folder under which model training information is to be saved :param tensorboard_dir: (str) name of folder under which tensorboard information is to be saved :param gpu: (bool) use a gpu in training :param uge: (bool) use a Univa Grid Engine (UGE) to generate models :param uge_dir: (str) working directory for UGE models :return: None """ class MyArchFactory(tpm_af.ArchitectureFactory): def new_architecture(self, input_dim=25000, embedding_dim=100, hidden_dim=256, output_dim=1, n_layers=2, bidirectional=True, dropout=0.5, pad_idx=-999): return tpta.EmbeddingLSTM(input_dim, embedding_dim, hidden_dim, output_dim, n_layers, bidirectional, dropout, pad_idx) def arch_factory_kwargs_generator(train_dataset_desc, clean_test_dataset_desc, triggered_test_dataset_desc): # Note: the arch_factory_kwargs_generator returns a dictionary, which is used as kwargs input into an # architecture factory. Here, we allow the input-dimension and the pad-idx to be set when the model gets # instantiated. This is useful because these indices and the vocabulary size are not known until the # vocabulary is built. output_dict = dict(input_dim=train_dataset_desc.vocab_size, pad_idx=train_dataset_desc.pad_idx) return output_dict # get all available experiments from the experiment root directory experiment_path = os.path.join(top_dir, data_folder, experiment_folder) modelgen_cfgs = [] arch_factory_kwargs = dict( input_dim=25000, embedding_dim=100, hidden_dim=256, output_dim=1, n_layers=2, bidirectional=True, dropout=0.5 ) for i in range(len(experiment_list)): experiment_cfg = experiment_list[i] data_obj = dm.DataManager(experiment_path, experiment_cfg['train_file'], experiment_cfg['clean_test_file'], data_type='text', triggered_test_file=experiment_cfg['triggered_test_file'], shuffle_train=True, data_configuration=dc.TextDataConfiguration( max_vocab_size=arch_factory_kwargs['input_dim'], embedding_dim=arch_factory_kwargs['embedding_dim'])) num_models = 5 if uge: if gpu: device = torch.device('cuda') else: device = torch.device('cpu') else: device = torch.device('cuda' if torch.cuda.is_available() and gpu else 'cpu') default_nbpvdm = None if device.type == 'cpu' else 500 early_stopping_argin = tpmc.EarlyStoppingConfig() if early_stopping else None training_params = tpmc.TrainingConfig(device=device, epochs=10, batch_size=64, lr=1e-3, optim='adam', objective='BCEWithLogitsLoss', early_stopping=early_stopping_argin, train_val_split=train_val_split) reporting_params = tpmc.ReportingConfig(num_batches_per_logmsg=100, num_epochs_per_metric=1, num_batches_per_metrics=default_nbpvdm, tensorboard_output_dir=tensorboard_dir, experiment_name=experiment_cfg['name']) lstm_optimizer_config = tpmc.TorchTextOptimizerConfig(training_cfg=training_params, reporting_cfg=reporting_params, copy_pretrained_embeddings=True) optimizer = tptto.TorchTextOptimizer(lstm_optimizer_config) # There seem to be some issues w/ using the DataParallel w/ RNN's (hence, parallel=False). # See here: # - https://discuss.pytorch.org/t/pack-padded-sequence-with-multiple-gpus/33458 # - https://pytorch.org/docs/master/notes/faq.html#pack-rnn-unpack-with-data-parallelism # - https://github.com/pytorch/pytorch/issues/10537 # Although these issues are "old," the solutions provided in these forums haven't yet worked # for me to try to resolve the data batching error. For now, we suffice to using the single # GPU version. cfg = tpmc.ModelGeneratorConfig(MyArchFactory(), data_obj, model_save_folder, stats_save_folder, num_models, arch_factory_kwargs=arch_factory_kwargs, arch_factory_kwargs_generator=arch_factory_kwargs_generator, optimizer=optimizer, experiment_cfg=experiment_cfg, parallel=False, save_with_hash=True) # may also provide lists of run_ids or filenames as arguments to ModelGeneratorConfig to have more control # of saved model file names; see RunnerConfig and ModelGeneratorConfig for more information modelgen_cfgs.append(cfg) if uge: if gpu: q1 = tpmc.UGEQueueConfig("gpu-k40.q", True) q2 = tpmc.UGEQueueConfig("gpu-v100.q", True) q_cfg = tpmc.UGEConfig([q1, q2], queue_distribution=None) else: q1 = tpmc.UGEQueueConfig("htc.q", False) q_cfg = tpmc.UGEConfig(q1, queue_distribution=None) working_dir = uge_dir try: shutil.rmtree(working_dir) except IOError: pass model_generator = ugemg.UGEModelGenerator(modelgen_cfgs, q_cfg, working_directory=working_dir) else: model_generator = mg.ModelGenerator(modelgen_cfgs) start = time.time() model_generator.run() logger.debug("Time to run: ", (time.time() - start) / 60 / 60, 'hours')