def cleanup(): ts.stop_torchserve() rm_dir('model_store') rm_dir('logs') # clean up residual from model-archiver IT suite. rm_dir('model-archiver/model_archiver/htmlcov_ut model_archiver/model-archiver/htmlcov_it') rm_file('ts_scripts/*_pb2*.py', True)
def cleanup(): ts.stop_torchserve() rm_dir('model_store') rm_dir('logs') # clean up residual from model-archiver IT suite. rm_dir( 'model-archiver/model_archiver/htmlcov_ut model_archiver/model-archiver/htmlcov_it' )
"jmeter-plugins-manager-1.3.jar") print("Downloading plugins cmdrunner...") download_save( "http://search.maven.org/remotecontent?filepath=kg/apc/cmdrunner/2.2/cmdrunner-2.2.jar", f"{JMETER_HOME}\\lib\\", "cmdrunner-2.2.jar") print("Downloading plugins jmeter-plugins-standard...") download_save( "https://jmeter-plugins.org/downloads/file/JMeterPlugins-Standard-1.4.0.zip" ) unzip("JMeterPlugins-Standard-1.4.0.zip", os.getcwd(), "zip") shutil.copy("lib\ext\JMeterPlugins-Standard.jar", f"{JMETER_HOME}\\lib\\ext\\") rm_file("JMeterPlugins-Standard-1.4.0.zip") rm_dir("lib") cmd = 'java -cp "{}\\apache-jmeter-5.3\\lib\\ext\\jmeter-plugins-manager-1.3.jar" org.jmeterplugins.repository.PluginManagerCMDInstaller'.format( JMETER_INSTALL_PATH) rc, out, _ = run(cmd) if rc != 0: print("Command execution failed : ", cmd) else: print(out) print("Installing Plugins..") cmd_plugins = '"{}\\apache-jmeter-5.3\\bin\\PluginsManagerCMD.bat" install jpgc-synthesis=2.1 jpgc-filterresults=2.1 jpgc-mergeresults=2.1 jpgc-cmd=2.1 jpgc-perfmon=2.1'.format( JMETER_INSTALL_PATH) rc, out, _ = run(cmd_plugins) if rc != 0: print("Command execution failed : ", cmd_plugins)
import tempfile import sys sys.path.append('../../ts_scripts') from ts_scripts.shell_utils import rm_dir, rm_file, download_save import os import shutil import subprocess TMP_DIR = tempfile.gettempdir() rm_file("torchhub.zip") rm_dir(os.path.join(TMP_DIR, "DeepLearningExamples-torchhub")) rm_dir("PyTorch") download_save( "https://github.com/nvidia/DeepLearningExamples/archive/torchhub.zip", TMP_DIR) shutil.unpack_archive(os.path.join(TMP_DIR, "torchhub.zip"), extract_dir=TMP_DIR) rm_file("tacotron.zip") shutil.copytree( os.path.join(TMP_DIR, "DeepLearningExamples-torchhub/PyTorch/SpeechSynthesis/"), "PyTorch/SpeechSynthesis/") shutil.make_archive("tacotron", "zip", base_dir="PyTorch") download_save( "https://api.ngc.nvidia.com/v2/models/nvidia/tacotron2pyt_fp32/versions/1/files/" "nvidia_tacotron2pyt_fp32_20190306.pth") download_save( "https://api.ngc.nvidia.com/v2/models/nvidia/waveglowpyt_fp32/versions/1/files/" "nvidia_waveglowpyt_fp32_20190306.pth") subprocess.run( "torch-model-archiver --model-name waveglow_synthesizer --version 1.0 "