Пример #1
0
    def distance_1d_sax(self, sax1, sax2):
        """Compute distance between 1d-SAX representations as defined in [1]_.

        Parameters
        ----------
        sax1 : array-like
            1d-SAX representation of a time series
        sax2 : array-like
            1d-SAX representation of another time series

        Returns
        -------
        float
            1d-SAX distance

        Notes
        -----
            Unlike SAX distance, 1d-SAX distance does not lower bound Euclidean
            distance between original time series.

        References
        ----------
        .. [1] S. Malinowski, T. Guyet, R. Quiniou, R. Tavenard. 1d-SAX: a
           Novel Symbolic Representation for Time Series. IDA 2013.
        """
        if not self._is_fitted():
            raise NotFittedError("Model not fitted yet: cannot be used for " +
                                 "distance computation.")
        else:
            return cydist_1d_sax(sax1, sax2, self.breakpoints_avg_middle_,
                                 self.breakpoints_slope_middle_,
                                 self.size_fitted_)
Пример #2
0
    def distance_1d_sax(self, sax1, sax2):
        """Compute distance between 1d-SAX representations as defined in [1]_.

        Parameters
        ----------
        sax1 : array-like
            1d-SAX representation of a time series
        sax2 : array-like
            1d-SAX representation of another time series

        Returns
        -------
        float
            1d-SAX distance

        Notes
        -----
            Unlike SAX distance, 1d-SAX distance does not lower bound Euclidean
            distance between original time series.

        References
        ----------
        .. [1] S. Malinowski, T. Guyet, R. Quiniou, R. Tavenard. 1d-SAX: a
           Novel Symbolic Representation for Time Series. IDA 2013.
        """
        self._is_fitted()
        return cydist_1d_sax(sax1, sax2, self.breakpoints_avg_middle_,
                             self.breakpoints_slope_middle_,
                             self._X_fit_dims_[1])