Пример #1
0
    #print(of)
    #data = np.load(of)
    #snod = data['snow']
    #it = data['ice']

    ##get rid of nans
    #m1 = np.ma.masked_invalid(it)
    ##it = np.ma.masked_invalid(it)

    #snod = snod[m1.mask == False]
    #it = it[m1.mask == False]

    #load the csv data created in tt_grid.py
    fname = glob(inpath_table + '*/magna+gem2-transect-' + date + '*' + loc +
                 '*.csv')[0]
    snod = getColumn(fname, 5, delimiter=',', magnaprobe=False)
    it = getColumn(fname, 6, delimiter=',', magnaprobe=False)
    snod = np.array(snod, dtype=np.float)
    it = np.array(it, dtype=np.float)

    #print(it)
    #exit()

    #means and modes
    mn = np.mean(snod)
    print(mn)
    #mni = np.mean(it)

    #find mode
    hist = np.histogram(it, bins=irbins)
    srt = np.argsort(hist[0])  #indexes that would sort the array
Пример #2
0
#dates = ['20200123']



print(loc)
colors = plt.cm.rainbow(np.linspace(0, 1, len(dates)))

inpath = '../data/MCS/MP/'
outpath = '../plots_AGU/'
inpath_grid = '../data/grids_AGU/'
outname = 'profile_'+loc+str(stp)+'.png'

#choose one 'most perfct' MP track to compare to the others
fname = glob(inpath+'*/magnaprobe-transect-'+fixed_date+'*'+loc+'-track-icecs-xy_corr.csv')[0]
print(fname)
mxx = getColumn(fname,3, delimiter=',', magnaprobe=False)
mxx = np.array(mxx,dtype=np.float)

myy = getColumn(fname,4, delimiter=',', magnaprobe=False)
myy = np.array(myy,dtype=np.float)

#fix cooridinate shift
if fixed_date == '20200220':
    mxx = mxx-10

    if loc == 'Nloop':
        myy = myy-3

if fixed_date == '20191222':
    mxx = mxx+3
    myy = myy+3
Пример #3
0
nit_ts=[]

for dd in range(0,len(dates)):
    date = dates[dd]
    dt = datetime.strptime(date, '%Y%m%d')
    dt_list.append(dt)
    print(date)
    
    #outname = 'profile_'+date+'_'+loc+'gridded.png'
        
    if gridded==False:
    
        #choose one 'most perfct' MP track to compare to the others
        fname = glob(inpath_table+'*/magna+gem2-transect-'+date+'*'+loc+'.csv')[0]
        print(fname)
        mxx = getColumn(fname,3, delimiter=',', magnaprobe=False)
        myy = getColumn(fname,4, delimiter=',', magnaprobe=False)
        snod = getColumn(fname,5, delimiter=',', magnaprobe=False)
        it = getColumn(fname,6, delimiter=',', magnaprobe=False)
        mxx = np.array(mxx,dtype=np.float)
        myy = np.array(myy,dtype=np.float)
        si = np.array(snod,dtype=np.float)
        it = np.array(it,dtype=np.float)
    
    else:
        inf = inpath_grid+loc+'_'+stp+'m_'+method_gem2+ch_name+'_track_test.npz'
        inf = inpath_grid+loc+'_'+stp+'m_'+method_gem2+ch_name+'_track.npz'
        
        data = np.load(inf)

        transect_snow = data['snow']
Пример #4
0
loc = 'Nloop'
dates = [
    '20191024', '20191031', '20191107', '20191114', '20191121', '20191128',
    '20191205', '20191219', '20191226', '20200102', '20200109', '20200116',
    '20200130', '20200206', '20200220', '20200227', '20200305', '20200320',
    '20200326', '20200403', '20200416', '20200424', '20200430', '20200507'
]

inpath_snow = '../data/MCS/MP/'
inpath_grid = '../data/grids_AGU/'
outpath = '../plots_AGU/'

#MP coordinates (for a day with good spacing!)
fn = glob(inpath_snow + '*/magnaprobe-transect-' + '20200116' + '*' + loc +
          '-track-icecs-xy_corr.csv')[0]
x_track = getColumn(fn, 3, delimiter=',', magnaprobe=False)
y_track = getColumn(fn, 4, delimiter=',', magnaprobe=False)

x_track = np.array(x_track, dtype=np.float)
y_track = np.array(y_track, dtype=np.float)

#storage space
transect_snow = np.zeros((len(x_track), 2 + len(dates)))
transect_ice = np.zeros((len(x_track), 2 + len(dates)))
#print(transect_snow.shape)

transect_snow[:, 0] = x_track
transect_snow[:, 1] = y_track

dt_list = []
Пример #5
0
#print(xx)
#print(yy)

#ice thickness data
fname = glob(inpath_ice + date_gem2 +
             '*/mosaic-*-*-gem2-*-channel-thickness.csv')[0]
mit1, mit2, mit3, mit4, mit5, mit6, mit7, mit8, mit9, mit10 = ridge_thick(
    fname)
#print(mit1)

#MP
fname = glob(inpath_snow + '*/magnaprobe-transect-' + date + '*' + loc +
             '-track-icecs-xy_corr.csv')[0]
print(fname)

dt = getColumn(fname, 0, delimiter=',', magnaprobe=False)
lon = getColumn(fname, 1, delimiter=',', magnaprobe=False)
lat = getColumn(fname, 2, delimiter=',', magnaprobe=False)

mxx = getColumn(fname, 3, delimiter=',', magnaprobe=False)
mxx = np.array(mxx, dtype=np.float)

myy = getColumn(fname, 4, delimiter=',', magnaprobe=False)
myy = np.array(myy, dtype=np.float)

#get some meta data for the MP transect:
dx = mxx[1:] - mxx[:-1]
dy = myy[1:] - myy[:-1]
d = np.sum(np.sqrt(dx**2 + dy**2))
print('transect length:')
print(d)
Пример #6
0
import numpy as np
from glob import glob
from tt_func import getColumn
import matplotlib.pyplot as plt

#GEM-2
inpath = '../../../MOSAiC/thickness_workspace/01-ice-thickness/20200220-PS122-2_25-117/'
outpath = '../plots/'

fname = 'mosaic-transect-20200220-gem2-556-track-icecs-xy.csv'
xx = getColumn(inpath + fname, 3, delimiter=',', magnaprobe=False)
xx = np.array(xx, dtype=np.float)

yy = getColumn(inpath + fname, 4, delimiter=',', magnaprobe=False)
yy = np.array(yy, dtype=np.float)

#print(xx)

#MP
inpath = '../data/'
outpath = '../plots/'

#early date
fname = '20200102_Sloop_MP_transect_track-icecs-xy.csv'
mxx1 = getColumn(inpath + fname, 3, delimiter=',', magnaprobe=False)
mxx1 = np.array(mxx1, dtype=np.float)

myy1 = getColumn(inpath + fname, 4, delimiter=',', magnaprobe=False)
myy1 = np.array(myy1, dtype=np.float)

fname = '20200102_Nloop_MP_transect_track-icecs-xy.csv'
Пример #7
0
    print(loc)
    print(date)
    print(date_gem2)




    #we need to merge all GEM-2 survery for that day first
    #coordinates
    xx = []
    yy = []
    fname = glob(inpath_ice+date_gem2+'*/mosaic-transect-*-gem2-*-track-icecs-xy.csv')
    for fn in fname:
        print(fname)
        x = getColumn(fn,3, delimiter=',', magnaprobe=False)
        y = getColumn(fn,4, delimiter=',', magnaprobe=False)
        
        xx.extend(x); yy.extend(y)
        
    xx_full = np.array(xx,dtype=np.float)
    yy_full  = np.array(yy,dtype=np.float)
        
    #ice thickness data
    tt18 = []; tt5 = []; tt93 = []
    fname = glob(inpath_ice+date_gem2+'*/mosaic-transect-*-gem2-*-channel-thickness.csv')
    for fn in fname:
        
        #time, record_id, longitude, latitude, xc, yc, f1525Hz_hcp_i, f1525Hz_hcp_q, f5325Hz_hcp_i, f5325Hz_hcp_q, f18325Hz_hcp_i, f18325Hz_hcp_q, f63025Hz_hcp_i, f63025Hz_hcp_q, f93075Hz_hcp_i, f93075Hz_hcp_q
        t18 = getColumn(fn,10, delimiter=',', magnaprobe=False)        #take 18KHz ip
        t5 = getColumn(fn,8, delimiter=',', magnaprobe=False)        #take 5KHz ip
Пример #8
0
    #if date == '20191024': continue     #Nloop has partially different track here - more resembling the planned square
    #if date == '20191031': continue     #Nloop has partially different track here - even more strange...
    #if date == '20200123': continue     #long transect

    if date == '20200716': continue  #missing data and bad coordinates
    if date == '20200717': continue  #bad GEM-2 coordinates
    if date == '20200723': continue
    if date == '20200724': continue

    if date == '20200116':
        #there is something wrong with the GEM-2 coordintes for this date - was supposed to be a regular transect day (good data)
        #try to use a GEM-2 file for one week earlier
        fname = flist[7]

    print(fname)
    xx = getColumn(fname, 3, delimiter=',', magnaprobe=False)
    xx = np.array(xx, dtype=np.float)

    yy = getColumn(fname, 4, delimiter=',', magnaprobe=False)
    yy = np.array(yy, dtype=np.float)

    #GEM-2 files contain nans
    xx = np.ma.masked_invalid(xx)
    yy = np.ma.masked_invalid(yy)

    dx = xx[1:] - xx[:-1]
    dy = yy[1:] - yy[:-1]
    d = np.sum(np.sqrt(dx**2 + dy**2))

    print('transect length:')
    print(d)