Пример #1
0
    def test_negative_values_in_weights_error(self):
        """Test that an exception is raised if there are negative values in sample_weight."""

        x = CappingTransformer(capping_values={"a": [2, 10]})

        with pytest.raises(ValueError, match="negative weights in sample weights"):

            x.weighted_quantile([2, 3, 4, 5], [0, 1], [2, -0.01])
Пример #2
0
    def test_zero_total_weight_error(self):
        """Test that an exception is raised if the total sample weights are 0."""

        x = CappingTransformer(capping_values={"a": [2, 10]})

        with pytest.raises(
            ValueError, match="total sample weights are not greater than 0"
        ):

            x.weighted_quantile([2, 3, 4, 5], [0, 1], [0, 0])
Пример #3
0
    def test_inf_values_in_weights_error(self):
        """Test that an exception is raised if there are inf values in sample_weight."""

        x = CappingTransformer(capping_values={"a": [2, 10]})

        with pytest.raises(ValueError, match="infinite values in sample weights"):

            x.weighted_quantile([2, 3, 4, 5], [0, 1], [2, np.inf])

        with pytest.raises(ValueError, match="infinite values in sample weights"):

            x.weighted_quantile([2, 3, 4, 5], [0, 1], [1, -np.inf])
Пример #4
0
    def test_expected_output(
        self, values, sample_weight, quantiles, expected_quantiles
    ):
        """Test that weighted_quantile gives the expected outputs."""

        x = CappingTransformer(capping_values={"a": [2, 10]})

        values = pd.Series(values)

        actual = x.weighted_quantile(values, quantiles, sample_weight)

        # round to 1dp to avoid mismatches due to numerical precision
        actual_rounded_1_dp = list(np.round(actual, 1))

        assert (
            actual_rounded_1_dp == expected_quantiles
        ), "unexpected weighted quantiles calculated"