def test_expected_output(self, df, expected):
        """Test that transform then inverse_transform gets back to the original df."""

        x = NominalToIntegerTransformer(columns=["a", "b"])

        # set the mapping dict directly rather than fitting x on df so test works with helpers
        x.mappings = {
            "a": {
                1: 0,
                2: 1,
                3: 2,
                4: 3,
                5: 4,
                6: 5
            },
            "b": {
                "a": 0,
                "b": 1,
                "c": 2,
                "d": 3,
                "e": 4,
                "f": 5
            },
        }

        df_transformed = x.transform(df)

        df_transformed_back = x.inverse_transform(df_transformed)

        h.assert_frame_equal_msg(
            actual=df_transformed_back,
            expected=expected,
            msg_tag="transform reverse does not get back to original",
        )
    def test_check_is_fitted_called(self, mocker):
        """Test that BaseTransformer check_is_fitted called."""

        df = d.create_df_1()

        x = NominalToIntegerTransformer(columns=["a", "b"])

        x.fit(df)

        df_transformed = x.transform(df)

        expected_call_args = {0: {"args": (["mappings"], ), "kwargs": {}}}

        with h.assert_function_call(mocker, tubular.base.BaseTransformer,
                                    "check_is_fitted", expected_call_args):

            x.inverse_transform(df_transformed)
    def test_non_mappable_rows_raises_error(self):
        """Test that rows that cannot be mapped result in an exception."""

        x = NominalToIntegerTransformer(columns=["a", "b"])

        df = d.create_df_1()

        x.fit(df)

        df_transformed = x.transform(df)

        df_transformed["b"] = df_transformed["b"] + 1

        with pytest.raises(
                ValueError,
                match=
                "nulls introduced from levels not present in mapping for column: b",
        ):

            x.inverse_transform(df_transformed)
    def test_learnt_values_not_modified(self):
        """Test that the mappings from fit are not changed in inverse_transform."""

        df = d.create_df_1()

        x = NominalToIntegerTransformer(columns=["a", "b"])

        x.fit(df)

        x2 = NominalToIntegerTransformer(columns=["a", "b"])

        x2.fit(df)

        df_transformed = x2.transform(df)

        x2.inverse_transform(df_transformed)

        h.assert_equal_dispatch(
            expected=x.mappings,
            actual=x2.mappings,
            msg="Impute values not changed in inverse_transform",
        )