def sframe(frame): sf = SFrame(frame) sf.explore() sf.show() return
visualisation(y_pred=y_pred[:, 0].reshape(-1, 1), Y_test=Y_test[:, 0].reshape(-1, 1), y_difference=y_difference[:, 0].reshape(-1, 1)) # Insertion visualisation(y_pred=y_pred[:, 1].reshape(-1, 1), Y_test=Y_test[:, 1].reshape(-1, 1), y_difference=y_difference[:, 1].reshape(-1, 1)) # Deletion else: visualisation(y_pred, Y_test, y_difference) #Looking into sframe as an alternative to pandas, has s3 support #Tensorflow also has s3 and GCP support if you install from source and enable it sf = SFrame(build_csv(build_data(sample)[5], build_data(sample)[7])) sf.explore() sf.show() else: #Neural Network architecture def build_regressor(): #Initialising neural network regressor = Sequential() #Input layer and first hidden layer with dropout regressor.add( Dense(units=10, kernel_initializer='uniform', activation='relu', input_dim=input_dim))