Пример #1
0
from turtle import pd

import numpy as np

df = pd.read_csv('voice.csv')

Пример #2
0
def linearRegression(homeTeam, awayTeam):
    import pandas as pd
    from sklearn.tree import DecisionTreeRegressor
    from sklearn.linear_model import LinearRegression
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import mean_squared_error
    from math import sqrt

    try:

        if ('Man United' in homeTeam):
            dataset = 'dataset/ManUHome.csv'
        elif ('Fulham' in homeTeam):
            dataset = 'dataset/FulhamHome.csv'
        elif ('Newcastle' in homeTeam):
            dataset = 'dataset/NewcastleHome.csv'
        elif ('Man City' in homeTeam):
            dataset = 'dataset/ManCHome.csv'
        elif ('Wolves' in homeTeam):
            dataset = 'dataset/WolvesHome.csv'
        elif ('Liverpool' in homeTeam):
            dataset = 'dataset/LiverpoolHome.csv'
        elif ('Southampton' in homeTeam):
            dataset = 'dataset/SouthamptonHome.csv'
        elif ('Arsenal' in homeTeam):
            dataset = 'dataset/ArsenalHome.csv'
        elif ('Burnley' in homeTeam):
            dataset = 'dataset/BurnleyHome.csv'
        elif ('Everton' in homeTeam):
            dataset = 'dataset/EvertonHome.csv'
        elif ('Leicester' in homeTeam):
            dataset = 'dataset/LeicesterHome.csv'
        elif ('Tottenham' in homeTeam):
            dataset = 'dataset/TottenhamHome.csv'
        elif ('West Ham' in homeTeam):
            dataset = 'dataset/WestHamHome.csv'
        elif ('Chelsea' in homeTeam):
            dataset = 'dataset/ChelseaHome.csv'
        elif ('Brighton' in homeTeam):
            dataset = 'dataset/BrightonHome.csv'
        elif ('Crystal Palace' in homeTeam):
            dataset = 'dataset/CrystalPalaceHome.csv'
        elif ('West Brom' in homeTeam):
            dataset = 'dataset/WestBromHome.csv'
        elif ('Sheffield United' in homeTeam):
            dataset = 'dataset/SheffieldUnitedHome.csv'
        elif ('Leeds' in homeTeam):
            dataset = 'dataset/LeedsHome.csv'
        elif ('Aston Villa' in homeTeam):
            dataset = 'dataset/AstonVillaHome.csv'

        ##Read Data from the Database into pandas
        df = pd.read_csv(dataset, sep=',', header=0)

        ##Declare the Columns You Want to Use as Features
        features = ['HTHG', 'HS', 'HST']

        ##Specify the Prediction Target
        target = ['FTHG']
        ##Clean Data
        df = df.dropna()
        ##Extract Features and Target ('Full time home goals') Values into Separate Dataframes
        X = df[features]
        y = df[target]

        ##Typical row from features
        print(X.iloc[2])

        ##Linear Regression: Fit a model to the training set
        X_train, X_test, y_train, y_test = train_test_split(X,
                                                            y,
                                                            test_size=0.50,
                                                            train_size=0.50,
                                                            random_state=324)
        regressor = LinearRegression()
        regressor.fit(X_train, y_train)

        ##Perform Prediction using Linear Regression Model
        y_prediction = regressor.predict(X_test)

        print(y_prediction)

        # sg.Print('Prediction for Home Team...', do_not_reroute_stdout=False)

        ##What is the mean of the expected target value in test set ?
        # print(y_test.describe())
        ##Evaluate Linear Regression Accuracy using Root Mean Square Error
        RMSE = sqrt(mean_squared_error(y_true=y_test, y_pred=y_prediction))
        # formatted_Home_RMSE = "{:.2f}".format(RMSE)
        formatted_Home_RMSE = round(RMSE)

        # print("\nPredicted amount of goals using Linear Regression for {0}\nin their next game against {2} is: {1}".format(homeTeam, formatted_Home_RMSE,awayTeam))
        # print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_prediction))
        # print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_prediction))
        # print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_prediction)))

        ##Decision Tree Regressor - Fit a new regression model to the training set
        regressor = DecisionTreeRegressor(max_depth=20)
        regressor.fit(X_train, y_train)

        ##Perform Prediction using Decision Tree Regressor
        y_prediction = regressor.predict(X_test)
        y_prediction

        ##Evaluate Decision Tree Regression Accuracy using Root Mean Square Error
        RMSE2 = sqrt(mean_squared_error(y_true=y_test, y_pred=y_prediction))
        # formatted_Home_RMSE2 = "{:.2f}".format(RMSE2)
        formatted_Home_RMSE2 = round(RMSE2)
        # print("\nPredicted amount of goals using Decision Tree Regression for {0}\nin their next game against {2} is: {1}".format(homeTeam, formatted_Home_RMSE2,awayTeam))

    except:
        sg.Popup("No dataset available")

    try:

        if ('Man United' in awayTeam):
            dataset = 'dataset/ManUAway.csv'
        elif ('Fulham' in awayTeam):
            dataset = 'dataset/FulhamAway.csv'
        elif ('Newcastle' in awayTeam):
            dataset = 'dataset/NewcastleAway.csv'
        elif ('Man City' in awayTeam):
            dataset = 'dataset/ManCAway.csv'
        elif ('Wolves' in awayTeam):
            dataset = 'dataset/WolvesAway.csv'
        elif ('Liverpool' in awayTeam):
            dataset = 'dataset/LiverpoolAway.csv'
        elif ('Southampton' in awayTeam):
            dataset = 'dataset/SouthamptonAway.csv'
        elif ('Arsenal' in awayTeam):
            dataset = 'dataset/ArsenalAway.csv'
        elif ('Burnley' in awayTeam):
            dataset = 'dataset/BurnleyAway.csv'
        elif ('Everton' in awayTeam):
            dataset = 'dataset/EvertonAway.csv'
        elif ('Leicester' in awayTeam):
            dataset = 'dataset/LeicesterAway.csv'
        elif ('Tottenham' in awayTeam):
            dataset = 'dataset/TottenhamAway.csv'
        elif ('West Ham' in awayTeam):
            dataset = 'dataset/WestHamAway.csv'
        elif ('Chelsea' in awayTeam):
            dataset = 'dataset/ChelseaAway.csv'
        elif ('Brighton' in awayTeam):
            dataset = 'dataset/BrightonAway.csv'
        elif ('Crystal Palace' in awayTeam):
            dataset = 'dataset/CrystalPalaceAway.csv'
        elif ('West Brom' in awayTeam):
            dataset = 'dataset/WestBromAway.csv'
        elif ('Sheffield United' in awayTeam):
            dataset = 'dataset/SheffieldUnitedAway.csv'
        elif ('Leeds' in awayTeam):
            dataset = 'dataset/LeedsAway.csv'
        elif ('Aston Villa' in awayTeam):
            dataset = 'dataset/AstonVillaAway.csv'

        ##Read Data from the Database into pandas
        df = pd.read_csv(dataset, sep=',', header=0)

        ##Declare the Columns You Want to Use as Features
        features = ['HTAG', 'AS', 'AST']

        ##Specify the Prediction Target
        target = ['FTAG']
        ##Clean Data
        df = df.dropna()
        ##Extract Features and Target ('Full time away goals') Values into Separate Dataframes
        X = df[features]
        y = df[target]

        ##Typical row from features
        # print(X.iloc[2])

        ##Linear Regression: Fit a model to the training set
        X_train, X_test, y_train, y_test = train_test_split(X,
                                                            y,
                                                            test_size=0.75,
                                                            train_size=0.25,
                                                            random_state=324)
        regressor = LinearRegression()
        regressor.fit(X_train, y_train)

        ##Perform Prediction using Linear Regression Model
        y_prediction = regressor.predict(X_test)

        # sg.Print('\nPrediction for Away Team...', do_not_reroute_stdout=False)

        ##What is the mean of the expected target value in test set ?
        # print(y_test.describe())
        ##Evaluate Linear Regression Accuracy using Root Mean Square Error
        RMSE = sqrt(mean_squared_error(y_true=y_test, y_pred=y_prediction))
        # formatted_Away_RMSE = "{:.2f}".format(RMSE)
        formatted_Away_RMSE = round(RMSE)

        # print("\nPredicted amount of goals using Linear Regression for {0}\nin their next game against {2} is: {1}".format(awayTeam, formatted_Away_RMSE,homeTeam))

        ##Decision Tree Regressor - Fit a new regression model to the training set
        regressor = DecisionTreeRegressor(max_depth=20)
        regressor.fit(X_train, y_train)

        ##Perform Prediction using Decision Tree Regressor
        y_prediction = regressor.predict(X_test)
        y_prediction

        ##Evaluate Decision Tree Regression Accuracy using Root Mean Square Error
        RMSE2 = sqrt(mean_squared_error(y_true=y_test, y_pred=y_prediction))
        # formatted_Away_RMSE2 = "{:.2f}".format(RMSE2)
        formatted_Away_RMSE2 = round(RMSE2)

    # print("\nPredicted amount of goals using Decision Tree Regression for {0}\nin their next game against {2} is: {1}".format(awayTeam, formatted_Away_RMSE2,homeTeam))

    except:
        sg.Popup("No dataset available")

    # formatted_Home_RMSE = round(formatted_Home_RMSE)
    # formatted_Away_RMSE = round(formatted_Away_RMSE)

    sg.Print("Match Predictions utilizing Machine Learning Algorithms",
             do_not_reroute_stdout=False)
    print("-------------------------------------------")
    print(
        "Predicted Match Score using Linear Regression\n {0} : {1} - {2} : {3}"
        .format(homeTeam[0], formatted_Home_RMSE, awayTeam[0],
                formatted_Away_RMSE))
    print("-------------------------------------------")
    print(
        "Predicted Match Score using Decision Tree Regression\n {0} : {1} - {2} : {3}"
        .format(homeTeam[0], formatted_Home_RMSE2, awayTeam[0],
                formatted_Away_RMSE2))

    # api(homeTeam, awayTeam, formatted_Home_RMSE2, formatted_Away_RMSE2)

    predictions = {
        'homeTeam': homeTeam[0],
        'awayTeam': awayTeam[0],
        'homeTeamScore': formatted_Home_RMSE2,
        'awayTeamScore': formatted_Away_RMSE2,
    }

    import json
    with open('json/predictions.json', 'w') as f:
        json.dump(predictions, f)

    from dynamoDB import dataWriter
    call(["python", "dynamoDB/dataWriter.py"])
Пример #3
0
from turtle import pd
import pandas as pd
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn import metrics

PavoDataset = pd.read_csv('dataset.csv')
print(PavoDataset.head(6))
print(PavoDataset.describe())
location = PavoDataset['location3'][:]
print(location.head(6))

X = PavoDataset.drop(['location3', 'location1', 'location2'], axis=1)

X_train, X_test, y_train, y_test = train_test_split(X,
                                                    location,
                                                    test_size=0.10)

knn = KNeighborsClassifier(n_neighbors=3)

#Train the model using the training sets
knn.fit(X_train, y_train)

P = [[207.4, 182.2, 189.4, 193.0, 193.6]]

asa = knn.predict(P)
print("2) Using K Neighbors Classifier Prediction is " + str(knn.predict(P)))

#some_dict={35: [177.2, 178.0, 183.6, 177.2, 182.6], 89: [188.8, 185.8, 181.0, 190.0, 193.0], 92: [196.0, 196.0, 190.6, 191.2, 194.8], 267: [184.0, 177.2, 173.5, 174.6, 182.2]}
some_dict = {
    35: [177.8, 180.0, 182.2, 174.6, 182.8],
Пример #4
0
def logisticRegression(homeTeam, awayTeam):
    import pandas as pd
    import numpy as np
    from sklearn import preprocessing
    import matplotlib.pyplot as plt
    plt.rc("font", size=14)
    from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import train_test_split
    import seaborn as sns

    try:

        if ('Man United' in homeTeam):
            dataset = 'dataset/ManUHome.csv'
        elif ('Fulham' in homeTeam):
            dataset = 'dataset/FulhamHome.csv'
        elif ('Newcastle' in homeTeam):
            dataset = 'dataset/NewcastleHome.csv'
        elif ('Man City' in homeTeam):
            dataset = 'dataset/ManCHome.csv'
        elif ('Wolves' in homeTeam):
            dataset = 'dataset/WolvesHome.csv'
        elif ('Liverpool' in homeTeam):
            dataset = 'dataset/LiverpoolHome.csv'
        elif ('Southampton' in homeTeam):
            dataset = 'dataset/SouthamptonHome.csv'
        elif ('Arsenal' in homeTeam):
            dataset = 'dataset/ArsenalHome.csv'
        elif ('Burnley' in homeTeam):
            dataset = 'dataset/BurnleyHome.csv'
        elif ('Everton' in homeTeam):
            dataset = 'dataset/EvertonHome.csv'
        elif ('Leicester' in homeTeam):
            dataset = 'dataset/LeicesterHome.csv'
        elif ('Tottenham' in homeTeam):
            dataset = 'dataset/TottenhamHome.csv'
        elif ('West Ham' in homeTeam):
            dataset = 'dataset/WestHamHome.csv'
        elif ('Chelsea' in homeTeam):
            dataset = 'dataset/ChelseaHome.csv'
        elif ('Brighton' in homeTeam):
            dataset = 'dataset/BrightonHome.csv'
        elif ('Crystal Palace' in homeTeam):
            dataset = 'dataset/CrystalPalaceHome.csv'
        elif ('West Brom' in homeTeam):
            dataset = 'dataset/WestBromHome.csv'
        elif ('Sheffield United' in homeTeam):
            dataset = 'dataset/SheffieldUnitedHome.csv'
        elif ('Leeds' in homeTeam):
            dataset = 'dataset/LeedsHome.csv'
        elif ('Aston Villa' in homeTeam):
            dataset = 'dataset/AstonVillaHome.csv'

        ##Read Data from the Database into pandas
        df = pd.read_csv(dataset, sep=',', header=0)

        ##Declare the Columns You Want to Use as Features
        features = ['HTHG', 'HS', 'HST']

        ##Specify the Prediction Target
        target = ['FTHG']
        ##Clean Data
        df = df.dropna()
        ##Extract Features and Target ('Full time home goals') Values into Separate Dataframes
        X = df[features]
        y = df[target]

        ##Typical row from features
        print(X.iloc[2])

        ##Logistic Regression: Fit a model to the training set
        X_train, X_test, y_train, y_test = train_test_split(X,
                                                            y,
                                                            test_size=0.50,
                                                            train_size=0.50,
                                                            random_state=324)
        from sklearn.linear_model import LogisticRegression
        from sklearn import metrics
        logreg = LogisticRegression()
        logreg.fit(X_train, y_train)

        ##Perform Prediction using Logistic Regression Model
        y_prediction = logreg.predict(X_test)

        print(y_prediction)

        sg.Print('Prediction for Home Team...', do_not_reroute_stdout=False)

        print('Accuracy of logistic regression classifier on test set: {:.2f}'.
              format(logreg.score(X_test, y_test)))

        from sklearn.metrics import confusion_matrix
        confusion_matrix = confusion_matrix(y_test, y_prediction)
        print(confusion_matrix)

    except:
        sg.Popup("No dataset available")
Пример #5
0
def statistics(homeTeam, awayTeam):
    import pandas as pd

    import matplotlib.pyplot as plt
    plt.rc("font", size=14)

    try:

        if ('Man United' in homeTeam):
            dataset = 'dataset/ManUHome.csv'
        elif ('Fulham' in homeTeam):
            dataset = 'dataset/FulhamHome.csv'
        elif ('Newcastle' in homeTeam):
            dataset = 'dataset/NewcastleHome.csv'
        elif ('Man City' in homeTeam):
            dataset = 'dataset/ManCHome.csv'
        elif ('Wolves' in homeTeam):
            dataset = 'dataset/WolvesHome.csv'
        elif ('Liverpool' in homeTeam):
            dataset = 'dataset/LiverpoolHome.csv'
        elif ('Southampton' in homeTeam):
            dataset = 'dataset/SouthamptonHome.csv'
        elif ('Arsenal' in homeTeam):
            dataset = 'dataset/ArsenalHome.csv'
        elif ('Burnley' in homeTeam):
            dataset = 'dataset/BurnleyHome.csv'
        elif ('Everton' in homeTeam):
            dataset = 'dataset/EvertonHome.csv'
        elif ('Leicester' in homeTeam):
            dataset = 'dataset/LeicesterHome.csv'
        elif ('Tottenham' in homeTeam):
            dataset = 'dataset/TottenhamHome.csv'
        elif ('West Ham' in homeTeam):
            dataset = 'dataset/WestHamHome.csv'
        elif ('Chelsea' in homeTeam):
            dataset = 'dataset/ChelseaHome.csv'
        elif ('Brighton' in homeTeam):
            dataset = 'dataset/BrightonHome.csv'
        elif ('Crystal Palace' in homeTeam):
            dataset = 'dataset/CrystalPalaceHome.csv'
        elif ('West Brom' in homeTeam):
            dataset = 'dataset/WestBromHome.csv'
        elif ('Sheffield United' in homeTeam):
            dataset = 'dataset/SheffieldUnitedHome.csv'
        elif ('Leeds' in homeTeam):
            dataset = 'dataset/LeedsHome.csv'
        elif ('Aston Villa' in homeTeam):
            dataset = 'dataset/AstonVillaHome.csv'

        ##Read Data from the Database into pandas
        df = pd.read_csv(dataset, sep=',', header=0)

        ##Declare the Columns You Want to Use as Features
        features = ['HTHG', 'HS', 'HST']

        ##Specify the Prediction Target
        target = ['FTHG']
        ##Clean Data
        df = df.dropna()

        # sns.countplot(x='FTHG', data=data, palette='hls')
        # plt.show()
        # plt.savefig('count_plot')

        # data.groupby('FTHG').mean()
        # data.groupby('HS').mean()
        # data.groupby('HST').mean()

        pd.crosstab(df.FTHG, df.HS).plot(kind='bar')
        plt.title('{} home goals vs. shots'.format(homeTeam))
        plt.xlabel('Goals')
        plt.ylabel('Shots')
        plt.savefig('img/goals_vs_shots_home')
        plt.show(block=True)

        # data.FTHG.hist()
        # plt.title('Histogram of Home Goals')
        # plt.xlabel('Goals')
        # plt.ylabel('Frequency')
        # plt.savefig('hist_goals')

    except:
        sg.Popup("No dataset available")
Пример #6
0
def predicting(homeTeam, awayTeam):
    import pandas as pd
    try:
        if ('Man United' in homeTeam):
            dataset = 'dataset/ManUHome.csv'
        elif ('Fulham' in homeTeam):
            dataset = 'dataset/FulhamHome.csv'
        elif ('Fulham' in awayTeam):
            dataset = 'dataset/FulhamAway.csv'
        elif ('Man United' in awayTeam):
            dataset = 'dataset/ManUAway.csv'
        if ('Man United' in homeTeam):
            dataset = 'dataset/ManUHome.csv'
        elif ('Fulham' in homeTeam):
            dataset = 'dataset/FulhamHome.csv'
        elif ('Newcastle' in homeTeam):
            dataset = 'dataset/NewcastleHome.csv'
        elif ('Man City' in homeTeam):
            dataset = 'dataset/ManCHome.csv'
        elif ('Wolves' in homeTeam):
            dataset = 'dataset/WolvesHome.csv'
        elif ('Liverpool' in homeTeam):
            dataset = 'dataset/LiverpoolHome.csv'
        elif ('Southampton' in homeTeam):
            dataset = 'dataset/SouthamptonHome.csv'
        elif ('Arsenal' in homeTeam):
            dataset = 'dataset/ArsenalHome.csv'
        elif ('Burnley' in homeTeam):
            dataset = 'dataset/BurnleyHome.csv'
        elif ('Everton' in homeTeam):
            dataset = 'dataset/EvertonHome.csv'
        elif ('Leicester' in homeTeam):
            dataset = 'dataset/LeicesterHome.csv'
        elif ('Tottenham' in homeTeam):
            dataset = 'dataset/TottenhamHome.csv'
        elif ('West Ham' in homeTeam):
            dataset = 'dataset/WestHamHome.csv'
        elif ('Chelsea' in homeTeam):
            dataset = 'dataset/ChelseaHome.csv'
        elif ('Brighton' in homeTeam):
            dataset = 'dataset/BrightonHome.csv'
        elif ('Crystal Palace' in homeTeam):
            dataset = 'dataset/CrystalPalaceHome.csv'
        elif ('West Brom' in homeTeam):
            dataset = 'dataset/WestBromHome.csv'
        elif ('Sheffield United' in homeTeam):
            dataset = 'dataset/SheffieldUnitedHome.csv'
        elif ('Leeds' in homeTeam):
            dataset = 'dataset/LeedsHome.csv'
        elif ('Aston Villa' in homeTeam):
            dataset = 'dataset/AstonVillaHome.csv'

        df1 = pd.read_csv(dataset,
                          usecols=[
                              'HomeTeam', 'AwayTeam', 'FTHG', 'FTAG', 'FTR',
                              'HTR', 'HS', 'AS', 'HST', 'AST', 'B365H',
                              'B365D', 'B365A'
                          ])
        df1.head()

        stdoutOrigin = sys.stdout
        sys.stdout = open("logs/log.txt", "w")

        from statsmodels.stats import proportion
        confHome = proportion.proportion_confint((df1['FTR'] == 'H').sum(),
                                                 df1['FTR'].count(),
                                                 alpha=0.05,
                                                 method='wilson')
        confAway = proportion.proportion_confint((df1['FTR'] == 'A').sum(),
                                                 df1['FTR'].count(),
                                                 alpha=0.05,
                                                 method='wilson')
        confDraw = proportion.proportion_confint((df1['FTR'] == 'D').sum(),
                                                 df1['FTR'].count(),
                                                 alpha=0.05,
                                                 method='wilson')
        print(
            'The chance of home team to win with %95 confidence interval falls in :{}'
            .format(confHome))
        print(
            '--------------------------------------------------------------------------------'
        )
        print(
            'The chance of away team to win with %95 confidence interval falls in :{}'
            .format(confAway))
        print(
            '--------------------------------------------------------------------------------'
        )
        print('The chance of a draw with %95 confidence interval falls in :{}'.
              format(confDraw))

        sys.stdout.close()
        sys.stdout = stdoutOrigin
        textPrinting('logs/log.txt')

        import matplotlib.pyplot as plt
        plt.figure(figsize=(6, 8))
        plt.pie(df1['FTR'].value_counts(),
                labels=['Home Win', 'Home Loss', 'Draw'],
                autopct='%1.1f%%',
                shadow=True,
                startangle=0)
        plt.axis('equal')
        plt.title('Win Percentage', size=18)
        plt.show()

        sg.Popup("Complete")

    except:
        sg.Popup("No Matches")
Пример #7
0
    with open(path, 'r') as file:
        allData = []
        data = np.loadtxt(file, delimiter=delimiter)
        allData.append(data)
        allData = np.asarray(allData)
        return allData


popt, pcov = curve_fit(gaus, x1, y1, p0=[1, mean, sigma])
a, mu, sigma = popt
delta_a, delta_mu, delta_sigma = np.sqrt(np.diag(pcov))
# R^2
residuals = y1 - gaus(x1, *popt)
ss_res = np.sum(residuals**2)
ss_tot = np.sum((y1 - np.mean(y1))**2)
r_squared = 1 - (ss_res / ss_tot)


def gaus(x, a, x0, sigma):
    return a * np.exp(-(x - x0)**2 / (2 * sigma**2))


fit_param = []

## Fig1
df1 = pd.read_csv('gaussien.csv', sep=";", header=1)
x1 = df1.to_numpy().T[0].astype(float)
y1 = df1.to_numpy().T[1].astype(float)

x1_fit = np.linspace(x1[0], x1[-1], 1000)
plt.plot(x1_fit, gaus(x1_fit, *popt), linewidth=0.5, alpha=0.75, color='C0')
Пример #8
0
import datetime
from datetime import time
from turtle import pd

import pyautogui
import subprocess

subprocess.Popen("/Applications/OBS.app")
position = pyautogui.locateOnScreen("buttons\\recording_button.png")
# Move the cursor to the position of the button
pyautogui.moveTo(position)
# Perform click operation
pyautogui.click()
time.sleep(2)

df = pd.read_csv('timetable.csv')
while True:
    time = datetime.now().strftime("%H:%M")
    if time not in df.Time.values:
        position = pyautogui.locateOnScreen("button\\stoprecording_button.png")
        pyautogui.moveTo(position)
        break