Пример #1
0
def get_yjyg():
    df = ts.forecast_data(2018, 2)
    df.to_sql('yjyg',
              engine,
              if_exists='replace',
              index=False,
              index_label='code')
Пример #2
0
def getForecast(cursor):
    for i in range(1992, 2017+1):
        for j in range(1, 4+1):
            try:
                print(i, j)
                df = ts.forecast_data(i, j)

                # 处理缺失值
                df = df.stack().replace('--', '0').unstack()
                # print(df)

                dfLen = len(df)
                # print(dfLen)
                uuidList = []  # 添加uuid
                yearList = []  # 添加年份
                quarterList = []  # 添加季度
                for l in range(0, dfLen):
                    uuidList.append(uuid.uuid1())
                    yearList.append(str(i))
                    quarterList.append(str(j))
                df['uuid'] = uuidList
                df['year'] = yearList
                df['quarter'] = quarterList

                for k in range(0, dfLen):
                    df2 = df[k:k+1]

                    cursor.execute("insert into stock_forecast(uuid, code, name, type, report_date, pre_eps, range, year, quarter) "
                               "values(:uuid, :code, :name, :type, to_date(:report_date, 'yyyy-MM-dd'), :pre_eps, :range, :year, :quarter)",
                               (str(list(df2['uuid'])[0]), str(list(df2['code'])[0]), str(list(df2['name'])[0]), str(list(df2['type'])[0]),
                                str(list(df2['report_date'])[0]), round(float(df2['pre_eps']), 4), str(list(df2['range'])[0]),
                                str(list(df2['year'])[0]), str(list(df2['quarter'])[0])) )
                cursor.execute("commit")
            except Exception:
                pass
Пример #3
0
def _fetch_forecast():
    for year in range(2004, 2018):
        for quarter in range(1, 5):
            print(year, ' year ', 'quarter ', quarter)
            fcast = ts.forecast_data(year, quarter)
            fcast.rename(columns={'report_date': 'date'}, inplace=True)
            forecast.insert(fcast.to_dict('record'))
Пример #4
0
 def forecast_data(self, year, quarter):
     tsdata = ts.forecast_data(
         year=year,
         quarter=quarter,
     )
     jsdata = To_Json(tsdata)
     return jsdata
Пример #5
0
    def __init__(self):
        self.__yearRange = 5        #5年 从2012到2016
        self.__yearBegin = datetime.now().year-self.__yearRange
        #self.__getYearReportOnline()

        self.getThingsEveryday()
        #print(yearbegin)
        self.__pdYearReport = [pd.read_excel('D:/zzz/joinquant/data4stock/' + \
                    str(self.__yearBegin+i) + 'y.xls','Report',na_values=['NA']) \
                         for i in range(self.__yearRange)]
        self.__pdYearProfit = [pd.read_excel('D:/zzz/joinquant/data4stock/' + \
                    str(self.__yearBegin+i) + 'Profit.xls', sheet_name='Profit',na_values=['NA'])\
                               for i in range(self.__yearRange)]

        self.__stocksL = set(self.__pdYearReport[3].code.values)
        self.__stocksNow = set(self.__pdYearReport[4].code.values)      # 出了年报的股票
        self.__stocksNotNow = set(self.__stocksL - self.__stocksNow)
        #self.__stockNotNew = self.__stockBasics[(self.__stockBasics.timeToMarket < 20160101) &
        #                    (self.__stockBasics.timeToMarket != 0)].index.values.astype(int)
        #self.__stockNotNew
        #print(self.__stockNotNew.index.values.astype(int))    #每天更新一次
        pdYPL = self.__pdYearProfit[3]
        pdYRL = self.__pdYearReport[3]
        self.__pdYearReportNear = self.__pdYearReport[4].append(pdYRL[pdYRL.code.isin(self.__stocksNotNow)])
        self.__pdYearProfitNear = self.__pdYearProfit[4].append(pdYPL[pdYPL.code.isin(self.__stocksNotNow)])
        self.__minute_update = -1
        self.__forecastLastYear = ts.forecast_data(datetime.now().year-1, 4)
        self.__forecastLastYear['code'] = self.__forecastLastYear['code'].astype(int)
        #print(self.__pdYearReportNear[self.__pdYearReportNear.code==600522])
        #print(self.__pdYearReportNear[self.__pdYearReportNear.code == 600067])
        #pdtest.to_excel('D:/zzz/joinquant/data4stock/' + str('test') + 'Profit.xls', sheet_name='Profit')
        print('\n')
Пример #6
0
def save_forecast_data():
    forecast_cols = ['股票代码', '预告类型', '预告日期', '变动范围']
    fd = ts.forecast_data(forcast_year, forcast_season)
    del fd['name']
    del fd['pre_eps']
    #fd.columns = forecast_cols;
    fd.to_csv("forecast_%s.csv" % dateStr, encoding="utf-8", index=False)
Пример #7
0
    def __init__(self):
        self.__yearRange = 5  #5年 从2012到2016
        self.__yearBegin = datetime.now().year - self.__yearRange
        #self.__getYearReportOnline()
        self.__flagUpdateReport = False
        flag = input('Update report now(Y/N):')
        if flag == 'Y' or flag == 'y':
            self.__flagUpdateReport = True

        self.getThingsEveryday()
        #print(yearbegin)
        self.__pdYearReport = [pd.read_excel('./' + \
                    str(self.__yearBegin+i) + 'y.xls','Report',na_values=['NA']) \
                         for i in range(self.__yearRange)]
        self.__pdYearProfit = [pd.read_excel('./' + \
                    str(self.__yearBegin+i) + 'Profit.xls', sheet_name='Profit',na_values=['NA'])\
                               for i in range(self.__yearRange)]
        self.__pdYearGrowth = [pd.read_excel('./' + \
                    str(self.__yearBegin+i) + 'Growth.xls','Growth',na_values=['NA']) \
                         for i in range(self.__yearRange)]

        self.__stocksL = set(self.__pdYearGrowth[3].code.values)
        self.__stocksNow = set(self.__pdYearGrowth[4].code.values)  # 出了年报的股票
        self.__stocksNotNow = set(self.__stocksL - self.__stocksNow)
        #self.__stockNotNew = self.__stockBasics[(self.__stockBasics.timeToMarket < 20160101) &
        #                    (self.__stockBasics.timeToMarket != 0)].index.values.astype(int)
        #self.__stockNotNew
        #print(self.__stockNotNew.index.values.astype(int))    #每天更新一次
        pdYPL = self.__pdYearProfit[3]
        pdYRL = self.__pdYearReport[3]
        self.__pdYearReportNear = self.__pdYearReport[4].append(
            pdYRL[pdYRL.code.isin(self.__stocksNotNow)])
        self.__pdYearProfitNear = self.__pdYearProfit[4].append(
            pdYPL[pdYPL.code.isin(self.__stocksNotNow)])
        self.__minute_update = -1
        self.__forecastLastYear = ts.forecast_data(datetime.now().year - 1, 4)
        self.__forecastLastYear['code'] = self.__forecastLastYear[
            'code'].astype(int)
        #print(self.__pdYearReportNear[self.__pdYearReportNear.code==600522])
        #print(self.__pdYearReportNear[self.__pdYearReportNear.code == 600067])
        #pdtest.to_excel('D:/zzz/joinquant/data4stock/' + str('test') + 'Profit.xls', sheet_name='Profit')
        print('\n')

        for i in range(self.__yearRange):
            self.__pdYearReport[i].rename(
                columns={'profits_yoy': 'yoy' + str(i)}, inplace=True)
        self.pdYear4Report = self.__pdYearReport[0].copy()
        for i in range(1, self.__yearRange - 1):
            self.pdYear4Report = self.pdYear4Report.merge(
                self.__pdYearReport[i], on='code')

        # 4年成长能力
        for i in range(self.__yearRange):  #5年 从2012到2016 0-4
            self.__pdYearGrowth[i].rename(columns={'nprg': 'yoy' + str(i)},
                                          inplace=True)
        self.pdYear4Growth = self.__pdYearGrowth[0].copy()
        for i in range(1, self.__yearRange - 1):
            self.pdYear4Growth = self.pdYear4Growth.merge(
                self.__pdYearGrowth[i], on='code')
Пример #8
0
 def forecast_data(year):
     for i in range(4):
         predts = ts.forecast_data(year, i + 1)
         if predts is not None:
             predts.to_sql('reference_forecast_data',
                           engine,
                           flavor='mysql',
                           if_exists='append')
Пример #9
0
def forecast_info(year, month):
    '''
    业绩预告
    '''
    try:
        return ts.forecast_data(year, month)
    except:
        print('error, month=[1,4], please check your parameter')
Пример #10
0
def get_stock_forecast(nd, jd):
    """
        获取业绩预告
    """
    try:
        res = ts.forecast_data(nd, jd)
        return res
    except:
        return None
Пример #11
0
    def download_forecast_data(self, year=2017, quarter=1):
        """
        """
        #print('downloading the forecast_data info...')

        try:
            data_2017_1 = ts.forecast_data(2017, 1)
            filename = 'forecast_data_2017_1'
            data_2017_1.to_excel(self.working_folder + filename + '.xlsx',
                                 encoding='GBK')
        except:
            print('download forecast_data_2017_1 failed')

        try:
            data_2017_2 = ts.forecast_data(2017, 2)
            filename = 'forecast_data_2017_2'
            data_2017_2.to_excel(self.working_folder + filename + '.xlsx',
                                 encoding='GBK')
        except:
            print('download forecast_data_2017_2 failed')

        try:
            data_2017_3 = ts.forecast_data(2017, 3)
            filename = 'forecast_data_2017_3'
            data_2017_3.to_excel(self.working_folder + filename + '.xlsx',
                                 encoding='GBK')
        except:
            print('download forecast_data_2017_3 failed')

        try:
            data_2017_4 = ts.forecast_data(2017, 4)
            filename = 'forecast_data_2017_4'
            data_2017_4.to_excel(self.working_folder + filename + '.xlsx',
                                 encoding='GBK')
        except:
            print('download forecast_data_2017_4 failed')

        data = data_2017_4.append(data_2017_3).append(data_2017_2).append(
            data_2017_1)
        data.drop_duplicates(subset=['code'], keep='first', inplace=True)
        filename = 'forecast_data'
        data.to_excel(self.working_folder + filename + '.xlsx', encoding='GBK')
        return
Пример #12
0
def download_forecast(year, quarter):
    try:
        df = ts.forecast_data(year, quarter)
        df.set_index('code', inplace=True)
        utils.df2csv(df, _forecast_file_path(year, quarter))
    except Exception as e:
        logger.error(
            'download_forecast(year[{}], quarter[{}]) failed.{}'.format(
                year, quarter, error.exception_string(e)))
        raise error.ServerException(error.SERVER_ERR_DOWNLOAD_FAILED,
                                    error.exception_string(e))
Пример #13
0
def getvrdata(isinit='no'):
    mylogger = getmylogger()
    curday = datetime.date.today()
    print(curday)
    curyear = curday.year
    curmonth = curday.month
    quarter = (curmonth - 1) // 3 + 1
    # prdict = {'profitdivi': '分配预案', 'forecast': '业绩预告', 'xsg': '限售股解禁', 'fundholdings': '基金持股', 'newstocks': '新股'}
    prdict = {'fundholdings': '基金持股'}
    for dv in prdict:
        vrtbname = dv
        vrinfo = prdict[vrtbname]
        try:
            if dv == "profitdivi":
                df = ts.profit_data(year=curyear, top=100)
                if isinit == 'no' and df is not None:
                    df = df[df['report_date'] >= str(curday)]
            elif dv == "forecast":
                df = ts.forecast_data(curyear, quarter)
                if isinit == 'no' and df is not None:
                    # print(df[df['report_date'].isin(['2019-12-28'])])
                    df = df[df['report_date'] >= str(curday)]
            elif dv == "xsg":
                df = ts.xsg_data()
                if isinit == 'no' and df is not None:
                    curym = datetime.date.today().strftime("%Y-%m")
                    df = df[df['date'].str.contains(curym)]
            elif dv == "fundholdings":
                if quarter == 1:
                    quarter = 4
                    curyear -= 1
                else:
                    quarter -= 1
                df = ts.fund_holdings(curyear, quarter)
                if isinit == 'no' and df is not None:
                    lastyq = str(curyear) + '-' + str(quarter)
                    df = df[df['date'].str.contains(lastyq)]
                if df is not None:
                    newcolumns = ['nums', 'count', 'nlast', 'name', 'amount', 'date', 'ratio', 'code', 'clast']
                    df.columns = newcolumns
            elif dv == "newstocks":
                df = ts.new_stocks()
                if isinit == 'no' and df is not None:
                    df = df[df['ipo_date'] >= str(curday)]
            else:
                mylogger.info("没有执行命令。")
            if df is not None:
                tosql(df, vrtbname, "append", vrinfo, mylogger)
            else:
                mylogger.info("没有%s数据。" % vrinfo)
        except Exception:
            tracelog = traceback.format_exc()
            mylogger.info("获取数据异常。")
            mylogger.info(tracelog)
Пример #14
0
def year_forecast_data(year):
    DTS=[]
    for i in range(4):
        preDTS=ts.forecast_data(year,i+1)
        DTS.append(preDTS)

    try:
        DTS = pd.concat(DTS)
    except ValueError:
        DTS = None

    return DTS
Пример #15
0
  def __init__(self):
    TestArr = [["601366","利群股份","预升","2018-04-16","0.1700","30.33"],
["000018","神州长城","预增","2018-04-16","0.0583","140%~170%"],
["000626","远大控股","预亏","2018-04-16","0.1602","0"],
["000430" ,'张家界',"预亏","2018-04-14","0.0330",'-241.78%~-237.06%'],
["300107" ,'张家界2',"预亏","2018-04-19","0.0320",'-30%']]
    if(Test):
      self.forecastDF = DataFrame(TestArr, columns=["code", "name","type","report_date", "pre_eps","range"])
    else:
      self.forecastDF = ts.forecast_data(2018,1)

    self.currentPrice = None
Пример #16
0
def updatepredict():
    predictdatalist=ts.forecast_data(2014,1)
    predictdata=pd.DataFrame(predictdatalist)
    conn= ms.connect(host='localhost',port = 3306,user='******', passwd='123456',db ='investment',charset="utf8")
    cur = conn.cursor()
    values=[]
    for index,row in predictdata.iterrows():
        values.append((row['code'],row['name'],row['type'],row['report_date'],row['pre_eps'],row['range']))
    cur.executemany("insert into predict20141 (code,name,type,report_date,pre_eps,ran) values(%s,%s,%s,%s,%s,%s)",values)
    conn.commit()
    cur.close()
    conn.close()
Пример #17
0
 def test_forecast(self):
     # code, 代码
     # name, 名称
     # type, 业绩变动类型【预增、预亏等】
     # report_date, 发布日期
     # pre_eps, 上年同期每股收益
     # range, 业绩变动范围
     self.setUp()
     # 获取2016年中报的业绩预告数据
     df = ts.forecast_data(2017, 1)
     insert_string = df.to_json(orient='records')
     items = json.loads(insert_string)
     self.mongo.db.forecast.insert(items)
Пример #18
0
def updateForecastDate(con, year: int, quarter: int):
    import share.model.dao.reference.ForecastData as Model
    logging.debug("Updating day updateForecastDate of {}Q{}".format(
        year, quarter))
    df = ts.forecast_data(year, quarter)
    res = []
    for _, row in df.iterrows():
        obj = Model.rowToORM(row, year=year, quarter=quarter)
        if obj is not None:
            res.append(obj)
    Base.metadata.create_all(con.engine)
    con.save_all(res)
    return
Пример #19
0
 def setForecastData(self,year=None,quarter=None, number = 1, isSave = False,tableName = REFERENCE_FORECAST_DATA):
     [year, quarter] = getYearQuarter(year, quarter)
     for i in range(0,number):
         try:
             df = ts.forecast_data(year, quarter)
             df['date'] =str(year) + str(quarter)
             if isSave is True:
                 df.to_sql(tableName,self.engine_sql, if_exists='append')
             quarter = quarter - 1
             if quarter < 1:
                 quarter = 4
                 year = year - 1
         except IOError,e:
             print e
Пример #20
0
def forecast_history(engine, year, quarter):
    tbl = "invest_forecast_history"
    tsl.log(tbl + " start...")
    try:
        df = ts.forecast_data(year, quarter)
        df['year'] = year
        df['quarter'] = quarter
        df = df.set_index('code', drop='true')
        df.to_sql(tbl, engine, if_exists='append')
        print
        tsl.log(tbl + " done")
    except BaseException, e:
        print
        print e
        tsl.log(tbl + " error")
Пример #21
0
def forecast_data(request):
    try:
        year = request.POST.get('year', '')  #必填
        quarter = request.POST.get('quarter', '')  #必填
        data = ts.forecast_data(int(year), int(quarter))

        res = {
            'columns':
            ['code', 'name', 'type', 'report_date', 'pre_eps', 'range'],
            'data': json.loads(json.dumps(data.values, cls=DateEncoder))
        }
    except (BaseException):
        return HttpResponse(BaseException)
    else:
        return HttpResponse(json.dumps(res), content_type="application/json")
Пример #22
0
def get_data_date(year, quarter):
    cmd = '''delete  from %s where `year`='%s' and quarter='%s' ''' % (
        table_name, year, quarter)
    print cmd
    run_mysql_cmd(cmd=cmd, conn=conn)  #先删除指定年和指定季度的数据
    rs = ts.forecast_data(year=int(year), quarter=int(quarter))
    rs['year'] = year
    rs['quarter'] = quarter
    rs = rs.drop_duplicates()  #去除重复的数据,没想到还有重复的,心塞塞,这个api不咋地啊,挖地兔
    pd.DataFrame.to_sql(rs,
                        table_name,
                        con=conn,
                        flavor='mysql',
                        if_exists='append',
                        index=False)
    return rs
Пример #23
0
def forecast(engine, year, quarter):
    tbl = "invest_forecast"
    tsl.log(tbl + " start...")
    try:
        df = ts.forecast_data(year, quarter)
        if len(df) != 0:
            df['year'] = year
            df['quarter'] = quarter
            df = df.reset_index()
            df.to_sql(tbl, engine, if_exists='replace')
        print
        tsl.log(tbl + " done")
    except BaseException, e:
        print
        print e
        tsl.log(tbl + " error")
Пример #24
0
def getForecast(cursor):
    for i in range(1992, 2017 + 1):
        for j in range(1, 4 + 1):
            try:
                print(i, j)
                df = ts.forecast_data(i, j)

                # 处理缺失值
                df = df.stack().replace('--', '0').unstack()
                #print(df.ix[129])
                #print(df)
                #print(df.ix[131])
                ##处理'None'
                # df=df.replace('None',0)

                dfLen = len(df)
                # print(dfLen)
                uuidList = []  # 添加uuid
                yearList = []  # 添加年份
                quarterList = []  # 添加季度
                for l in range(0, dfLen):
                    uuidList.append(uuid.uuid1())
                    yearList.append(str(i))
                    quarterList.append(str(j))
                df['uuid'] = uuidList
                df['year'] = yearList
                df['quarter'] = quarterList
                #print("xxxxx")
                for k in range(0, dfLen):
                    df2 = df[k:k + 1]

                    sql = (
                        "insert into stock_forecast(uuid, code, name, type, report_date, pre_eps, `range`, year, quarter) "
                        "value ('%s', '%s', '%s', '%s', '%s','%.4f', '%s','%s', '%s')"
                        %
                        (str(list(df2['uuid'])[0]), str(list(df2['code'])[0]),
                         str(list(df2['name'])[0]), str(list(df2['type'])[0]),
                         str(list(df2['report_date'])[0]),
                         round(float(df2['pre_eps']), 4),
                         str(list(df2['range'])[0]), str(list(
                             df2['year'])[0]), str(list(df2['quarter'])[0])))
                    print(sql)
                    cursor.execute(sql)
                cursor.execute("commit")
            except Exception as e:
                print(e)
                pass
Пример #25
0
	def update_forcast_quarter_report_data( self ):
		
		if not os.path.exists( self.__forcast_quarter_report_file_name ):
			list_date_quarter = Utils.parse_date_to_ymd( self.__date )
			df_forcast_quarter_report_data = pd.DataFrame()
			for year in range( 2003, int( list_date_quarter[0] ) + 1 ):
				for quarter in range( 1, 5 ):
					try:
						df_tmp = ts.forecast_data( year, quarter )
					except:
						ERROR( 'exception occurs when update forcast quarter report data of year {0} quarter {1}'.format( year, quarter ) )
					else:
						df_forcast_quarter_report_data = df_forcast_quarter_report_data.append( df_tmp )
						LOG( 'update forcast quarter report data of year {0} quarter {1}'.format( year, quarter ) )
					if year == int( list_date_quarter[0] ) and quarter == list_date_quarter[3]:		
						break
			Utils.save_data( df_forcast_quarter_report_data, self.__forcast_quarter_report_file_name, 'forcast quarter report' )
Пример #26
0
def get_ref_forecast_data(year, quarter):
    """
    投资参考 系列
    按年度、季度获取业绩预告数据,接口提供从1998年以后每年的业绩预告数据,
    需指定年度、季度两个参数
    """
    df = ts.forecast_data(year, quarter)
    print(df)
    if df is not None:
        if len(df) > 0:
            df.insert(0, 'year', year)
            df.insert(1, 'quarter', quarter)
        res = df.to_sql(invest_stock_ref_forecast, engine, if_exists='replace')
        msg = 'ok' if res is None else res
        print('获取业绩预告数据: {0} {1}: {2}'.format(year, quarter, msg) + '\n')
    else:
        print('获取业绩预告数据: {0} {1}: {2}'.format(year, quarter, 'None') + '\n')
Пример #27
0
def job_2():
    try:
        print("I'm working......投资参考数据")
        # 分配预案
        profit_data = ts.profit_data(year, top=1000)
        data = pd.DataFrame(profit_data)
        data.to_sql('profit_data',engine,index=True,if_exists='replace')
        print("分配预案......done")

        # 业绩预告
        forecast_data = ts.forecast_data(year,1)
        data = pd.DataFrame(forecast_data)
        data.to_sql('forecast_data',engine,index=True,if_exists='replace')
        print("业绩预告......done")

        # 限售股解禁
        xsg_data = ts.xsg_data()
        data = pd.DataFrame(xsg_data)
        data.to_sql('xsg_data',engine,index=True,if_exists='replace')
        print("限售股解禁......done")

        # 基金持股
        fund_holdings = ts.fund_holdings(year, 1)
        data = pd.DataFrame(fund_holdings)
        data.to_sql('fund_holdings',engine,index=True,if_exists='replace')
        print("基金持股......done")
    
        # 新股数据
        new_stocks = ts.new_stocks()
        data = pd.DataFrame(new_stocks)
        data.to_sql('new_stocks',engine,index=True,if_exists='replace')
        print("新股数据......done")

        # 融资融券(沪市)
        sh_margins = ts.sh_margins()
        data = pd.DataFrame(sh_margins)
        data.to_sql('sh_margins',engine,index=True,if_exists='replace')
        print("融资融券(沪市)......done")

        # 融资融券(深市)
        sz_margins = ts.sz_margins()
        data = pd.DataFrame(sz_margins)
        data.to_sql('sz_margins',engine,index=True,if_exists='replace')
        print("融资融券(深市)......done")
    except Exception as e:
        print(e)
Пример #28
0
def get_performance_forecast(year, quarter):
    """得到业绩预告
    
    Args:
        year: 年份, YYYY格式数字
        quarter: 季度, 只能是1, 2, 3, 4的数字
    Returns:
        data_dicts: 字段的列表, return None if have exception, return empty if no data
        """
    _check_input(year, quarter)
    logger.info(
        'Begin get performance forecast data, the year is: %s, quarter is: %s'
        % (year, quarter))
    try:
        data_df = ts.forecast_data(year=year, quarter=quarter)
    except Exception as e:
        logging.exception(
            'Error get performance forecast data, the year is: %s, quarter is: %s'
            % (year, quarter))
        return None
    else:
        data_dicts = []
        if data_df is None or data_df.empty:
            logger.warn(
                'Empty get performance forecast data, the year is: %s, quarter is: %s'
                % (year, quarter))
        else:
            data_dicts = [{
                'code': row[0],
                'name': row[1],
                'year': year,
                'quarter': quarter,
                'type': row[2],
                'report_date': row[3],
                'pre_eps': row[4],
                'range': row[5],
                'insert_date': today_line
            } for row in data_df.values]
            logger.info(
                'Success get performance forecast data, the year is: %s, quarter is: %s'
                % (year, quarter))
        return data_dicts
Пример #29
0
 def forecast(self):
     today = datetime.date.today()
     year = int(today.strftime('%Y'))
     month = int(today.strftime('%m'))
     if month > 3:
         quarter = month / 3
     else:
         quarter = 1 if month == 3 else 4
     data = ts.forecast_data(year, quarter)
     code_list = list(data.code)
     type_list = list(data.type)
     for code in self.valid_code:
         if code in code_list:
             index = code_list.index(code)
             if type_list[index] in [
                     '预降'.decode('utf-8'), '预减'.decode('utf-8'),
                     '预亏'.decode('utf-8')
             ]:
                 self.valid_code.remove(code)
                 self.expect_loss_code.append(code)
Пример #30
0
def updatepredict():
    predictdatalist = ts.forecast_data(2014, 1)
    predictdata = pd.DataFrame(predictdatalist)
    conn = ms.connect(host='localhost',
                      port=3306,
                      user='******',
                      passwd='123456',
                      db='investment',
                      charset="utf8")
    cur = conn.cursor()
    values = []
    for index, row in predictdata.iterrows():
        values.append((row['code'], row['name'], row['type'],
                       row['report_date'], row['pre_eps'], row['range']))
    cur.executemany(
        "insert into predict20141 (code,name,type,report_date,pre_eps,ran) values(%s,%s,%s,%s,%s,%s)",
        values)
    conn.commit()
    cur.close()
    conn.close()
Пример #31
0
 def fetchByYearQuarter(self, mongo, func):
     years = range(self.begin_year, self.end_year_notinclude)
     quarters = range(1, 1 + self.quarter)
     for year in years:
         for quarter in quarters:
             print(str(year) + " " + str(quarter))
             if (func == 'forecast_data'):
                 df = ts.forecast_data(year, quarter)
             elif (func == 'fund_holdings'):
                 df = ts.fund_holdings(year, quarter)
             else:
                 print(func)
                 df = {}
             tmpJson = json.loads(df.to_json(orient='records'))
             for i in range(len(tmpJson)):
                 tmpJson[i][u'year'] = int(year)
                 tmpJson[i][u'quarter'] = int(quarter)
             coll = mongo.reference[func]
             coll2 = mongo.reference[str(func) + '_' + str(year)]
             coll2.insert(tmpJson)
             coll.insert(tmpJson)
Пример #32
0
def ProfitExp():
    year=dt.date.today().year
    month=dt.date.today().month
    if month>9:
        season=4
    elif month>6:
        season=3
    elif month>3:
        season=2
    else:
        season=1

    if season==1:
        year=year-1
        season=4
    else:
        season=season-1

	dp=ts.forecast_data(year,season)
	dp=dp.sort_values('range',ascending=False)
	return [u"\n近期预披露靠前的结果:",dp[:30]]
Пример #33
0
def main():
    code = []
    time = []
    profit1 = []
    profit2 = []
    df = ts.forecast_data(2016, 2)
    for i in range(len(df)):
        if df['pre_eps'][i] > 0.1:
            code.append(df['code'][i])
            time.append(df['report_date'][i])

    for i in range(len(code)):
        start_time = datetime.datetime.strptime(time[i], '%Y-%m-%d')
        end_time1 = start_time + datetime.timedelta(days=30)
        end_time2 = start_time + datetime.timedelta(days=60)
        endstr1 = end_time1.strftime('%Y-%m-%d')
        endstr2 = end_time2.strftime('%Y-%m-%d')
        data = ts.get_k_data(start=time[i],
                             end=endstr1,
                             ktype='D',
                             autype='qfq',
                             code=code[i])
        try:
            profit1.append(data['close'][data.index[-1]] /
                           data['close'][data.index[0]] - 1)
        except:
            profit1.append(np.nan)
        data = ts.get_k_data(start=time[i],
                             end=endstr2,
                             ktype='D',
                             autype='qfq',
                             code=code[i])
        try:
            profit2.append(data['close'][data.index[-1]] /
                           data['close'][data.index[0]] - 1)
        except:
            profit2.append(np.nan)
    output = {'code': code, 'profit1': profit1, 'profit2': profit2}
    a = pd.DataFrame(output)
    a.to_csv('D:/pre_profit.csv')
Пример #34
0
    def check_forecast(self, upgrade=False):
        """
        检查该季度内是否发布业绩预告,放在report里面
        Parameters
        ----------
        self.code : stock code
        self.year : 年份
        self.quarter : 季度
        Returns
        -------
        if not search forecast , return None.
        code :
        name :
        type : 预升
        report_date :
        pre_eps :
        range:
        """
        _path = '../report/forecast_%s-%s.csv' % (self.year, self.quarter)
        if os.path.exists(_path) and (upgrade == False):
            all_forecast = pandas.read_csv(_path, encoding='gbk', header=0)

            all_forecast.code = all_forecast.code.map(
                lambda x: str(x).zfill(6))
            #all_forecast=all_forecast.set_index(['code'])

        else:
            print('there is not files,watting download %s' % self.year)
            all_forecast = ts.forecast_data(int(self.year), int(self.quarter))
            all_forecast.to_csv(_path, encoding='gbk')

        if self.code in all_forecast.code.values:
            stock_forecast = all_forecast[all_forecast['code'] == self.code]
            return stock_forecast  #print (stock_forecast)
        else:
            print('< %s has not forecast >' % self.code)
            return None
Пример #35
0
def baseAPI():
    # df=ts.get_hist_data('002524',start='2017-01-01',end='2017-04-24')
    # 这个函数只能获取近3年的数据
    # 目前这个版本是从最新开始 【0】
    # print(df)
    # print(df['close'].sum())

    # stock_info=ts.get_stock_basics()
    # print(stock_info)

    # stock_info.to_csv('2.csv',encoding='gbk')

    # n_df=pd.read_csv('2.csv',encoding='gbk')
    # n_df.to_excel('2.xls',encoding='gbk')
    # print(n_df)
    # 这样子居然搞定了。

    # dx_1=ts.get_hist_data('603111',start='2017-01-28',end='2017-04-22')
    # print(dx_1)
    # print(len(dx_1))

    # ts.get_sz50s()
    # print(dx_1['close'][0])

    '''
    print(stock_info.dtypes)
    cols=stock_info.columns
    for col in cols:
        if stock_info[col].dtype == 'O':
            print("O in " ,col)
            del stock_info[col]
    print(stock_info)
    stock_info.to_excel('new.xls')
    '''
    # 编码出错
    # stock_info.to_excel('base.xls',encoding='gb2312')
    '''
    data=stock_info.ix['300141']['timeToMarket']
    print(data)
    print(type(data))
    data=str(data)
    print(type(data))
    print(data[1:4])
    print(data[4:6])
    print(data)
    date_format=data[0:4]+'-'+data[4:6]+'-'+data[6:8]
    print(date_format)
    delta=60*7/5
    day0=datetime.date(datetime.date.today().year,datetime.date.today().month,datetime.date.today().day)
    day30=day0-datetime.timedelta(delta)
    print(day30)
    day30=day30.strftime("%Y-%m-%d")
    day0=day0.strftime("%Y-%m-%d")
    '''
    # df1=ts.new_stocks()
    # print(df1)
    # df2=ts.new_stocks(2)
    # print(df2)
    # df3=ts.new_stocks(3)
    # print(df3)

    # sz_index=ts.get_k_data('399001',index=True,start='2017-01-10',end='2017-04-28')
    '''
    sz_index=ts.get_k_data('300141')
    print(sz_index)
    print(sz_index.ix[sz_index['date']=='2014-05-06','high'].values[0])
    '''
    '''
    df = ts.get_realtime_quotes(['600848', '000980', '000981'])  #一次过返回3个数据
    print(df)
    '''

    # bar 函数
    # conn = ts.get_apis()
    # df =ts.bar('000022',conn,start_date='2000-01-01',adj='qfq')
    # print(df)
    # print(df.dtypes)
    df = ts.get_today_all()
    print(df)
    exit()

    filename = datetime.datetime.now().strftime('%Y-%m-%d') + '.xls'
    df.to_excel(filename)
    forecast_filename = '2017-12.xls'
    forecast_df = ts.forecast_data(2017, 4)
    print(forecast_df)
    forecast_df.to_excel(forecast_filename)
    ts.stock_pledged()
Пример #36
0
#coding=utf-8
'''
Created on 2015年6月4日

@author: Administrator
'''
import tushare as ts

# 分配预案
#每到季报、年报公布的时段,就经常会有上市公司利润分配预案发布,而一些高送转高分红的股票往往会成为市场炒作的热点。
df = ts.profit_data(top=60)
df.sort('shares',ascending=False)
df[df.shares>=10]#选择每10股送转在10以上的

# 业绩预告
ts.forecast_data(2014,2)#获取2014年中报的业绩预告数据

# 限售股解禁
# 以月的形式返回限售股解禁情况,通过了解解禁股本的大小,判断股票上行的压力。可通过设定年份和月份参数获取不同时段的数据。
ts.xsg_data()

# 新股数据
ts.new_stocks()

# 融资融券
ts.sh_margins(start='2015-01-01', end='2015-04-19')
ts.sz_margins(start='2015-01-01', end='2015-04-19')
#如果不设symbol参数或者开始和结束日期时段设置过长,数据获取可能会比较慢,建议分段分步获取,比如一年为一个周期
ts.sh_margin_details(start='2015-01-01', end='2015-04-19', symbol='601989')
ts.sz_margin_details('2015-04-20')
Пример #37
0
 def get_achievement(self):
     fc = ts.forecast_data(2016, 4)
     print fc
Пример #38
0
for code, stockRow in df.iterrows():
    print("pre divi " + stockRow['code'])
    print(type(stockRow['shares']))
    spamwriter.writerow([stockRow['code'], stockRow['name'], 
                         stockRow['year'], stockRow['report_date'], 
                         stockRow["divi"], 
                         stockRow["shares"]])
                      
preDivi_csv.close()


preEarning_csv = open('PreEarningResult.csv', 'wb+')
spamwriter1 = csv.writer(preEarning_csv,dialect='excel')
spamwriter1.writerow(['stock', 'name', 'type', 'report_date', "pre_eps", "range"])

tmp = str('111')
print(tmp.decode('utf-8').encode('gb2312'))
df1 = ts.forecast_data(2016,3)
for code1, stockRow1 in df1.iterrows():
    print("pre earning " + stockRow1['code'])
    print("name type " + type(stockRow1['name']).__name__)
    print("type type " + type(stockRow1['type']).__name__)
    print("pre_eps type " + type(stockRow1['pre_eps']).__name__)
    print(stockRow1['range'])
    print("range type " + type(stockRow1['range']).__name__)
    spamwriter1.writerow([stockRow1['code'], stockRow1['name'], 
                         stockRow1['type'].encode('gb2312'), stockRow1['report_date'], 
                         stockRow1["pre_eps"], 
                            tmp.decode('utf-8').encode('gb2312')])
                      
preEarning_csv.close()
Пример #39
0
 def forcast_data(self,stock):
     data = ts.forecast_data(2015,3)
     print data[-100:]