Пример #1
0
def execute():
    from tutils import trans_args, trans_init, load_yaml, dump_yaml
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", default="ablation.yaml")
    args = trans_args(parser)
    logger, config = trans_init(args)
    ablation_trainer = AblationTrainer(logger, config)
    ablation_trainer.run()
Пример #2
0
def template(_file_name):
    from tutils import trans_args, trans_init, load_yaml, dump_yaml
    import argparse
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", default="ablation.yaml")
    args = trans_args(parser)
    logger, config = trans_init(args)
    if config['ablation']['is']:
        # Check opts to do ablation
        ablation_trainer = AblationTrainer(logger, config)
        ablation_trainer.run_train()
        ablation_trainer.run_test()
Пример #3
0
def usage():
    from tutils import trans_args, trans_init, print_dict
    args = trans_args()
    print(args)
    logger, config = trans_init(args)

    print(" ---------------------------------------------------------")
    print_dict(config)

    metriclogger = MetricLogger(logger=None)

    for data in metriclogger.log_every(range(20),
                                       print_freq=2,
                                       header="[trans]"):
        i = 0
        metriclogger.update(**{"ind": i, "data": data})

    results = metriclogger.return_final_dict()
Пример #4
0
                          **config['training'])

        if args.pretrain:
            model.load()
            model.cuda()
        else:
            trainer.fit(model, dataset)

    def test(self, logger, config, args):
        model = Learner(config, logger)
        epoch = args.epoch
        pth = tfilename(config['runs_dir'], f"model_epoch_{epoch}.pth")
        model.load(pth)
        model.cuda()
        tester_train = Tester(logger, config, mode="Train")
        tester_test = Tester(logger, config, mode="Test1+2")
        logger.info(f"Dataset Training")
        tester_train.test(model)
        logger.info(f"Dataset Test 1+2")
        tester_test.test(model)


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    args = trans_args(parser)
    logger, config = trans_init(args)
    save_script(config['base']['runs_dir'], __file__)

    function_manager = FunctionManager()
    # getattr(function_manager, args.func)(logger, config, args)
    function_manager.run_function(logger, config, args)