def test_get_inputs_for_op_group(self):
        """
        Tests method get_datatypes_inputs_for_operation_group.
        The DataType inputs will be from a DataType group.
        """
        project, dt_group_id, first_dt, second_dt = self._create_datatype_group(
        )
        first_dt.visible = False
        dao.store_entity(first_dt)
        second_dt.visible = False
        dao.store_entity(second_dt)

        op_group = model.OperationGroup(project.id, "group", "range1[1..2]")
        op_group = dao.store_entity(op_group)
        params_1 = json.dumps({
            "param_5": "1",
            "param_1": first_dt.gid,
            "param_6": "2"
        })
        params_2 = json.dumps({
            "param_5": "1",
            "param_4": second_dt.gid,
            "param_6": "5"
        })

        algo = dao.get_algorithm_by_module(
            'tvb.tests.framework.adapters.testadapter3', 'TestAdapter3')

        op1 = model.Operation(self.test_user.id,
                              project.id,
                              algo.id,
                              params_1,
                              op_group_id=op_group.id)
        op2 = model.Operation(self.test_user.id,
                              project.id,
                              algo.id,
                              params_2,
                              op_group_id=op_group.id)
        dao.store_entities([op1, op2])

        inputs = self.project_service.get_datatypes_inputs_for_operation_group(
            op_group.id, self.relevant_filter)
        self.assertEqual(len(inputs), 0)

        inputs = self.project_service.get_datatypes_inputs_for_operation_group(
            op_group.id, self.full_filter)
        self.assertEqual(len(inputs), 1, "Incorrect number of dataTypes.")
        self.assertFalse(first_dt.id == inputs[0].id,
                         "Retrieved wrong dataType.")
        self.assertFalse(second_dt.id == inputs[0].id,
                         "Retrieved wrong dataType.")
        self.assertTrue(dt_group_id == inputs[0].id,
                        "Retrieved wrong dataType.")

        first_dt.visible = True
        dao.store_entity(first_dt)

        inputs = self.project_service.get_datatypes_inputs_for_operation_group(
            op_group.id, self.relevant_filter)
        self.assertEqual(len(inputs), 1, "Incorrect number of dataTypes.")
        self.assertFalse(first_dt.id == inputs[0].id,
                         "Retrieved wrong dataType.")
        self.assertFalse(second_dt.id == inputs[0].id,
                         "Retrieved wrong dataType.")
        self.assertTrue(dt_group_id == inputs[0].id,
                        "Retrieved wrong dataType.")

        inputs = self.project_service.get_datatypes_inputs_for_operation_group(
            op_group.id, self.full_filter)
        self.assertEqual(len(inputs), 1, "Incorrect number of dataTypes.")
        self.assertFalse(first_dt.id == inputs[0].id,
                         "Retrieved wrong dataType.")
        self.assertFalse(second_dt.id == inputs[0].id,
                         "Retrieved wrong dataType.")
        self.assertTrue(dt_group_id == inputs[0].id,
                        "Retrieved wrong dataType.")
    def test_get_inputs_for_operation(self):
        """
        Tests method get_datatype_and_datatypegroup_inputs_for_operation.
        Verifies filters' influence over results is as expected
        """
        algo = dao.get_algorithm_by_module(
            'tvb.tests.framework.adapters.testadapter3', 'TestAdapter3')

        array_wrappers = self._create_mapped_arrays(self.test_project.id)
        ids = []
        for datatype in array_wrappers:
            ids.append(datatype[0])

        datatype = dao.get_datatype_by_id(ids[0])
        datatype.visible = False
        dao.store_entity(datatype)

        parameters = json.dumps({
            "param_5": "1",
            "param_1": array_wrappers[0][2],
            "param_2": array_wrappers[1][2],
            "param_3": array_wrappers[2][2],
            "param_6": "0"
        })
        operation = model.Operation(self.test_user.id, self.test_project.id,
                                    algo.id, parameters)
        operation = dao.store_entity(operation)

        inputs = self.project_service.get_datatype_and_datatypegroup_inputs_for_operation(
            operation.gid, self.relevant_filter)
        self.assertEqual(len(inputs), 2)
        self.assertTrue(ids[1] in [inputs[0].id, inputs[1].id],
                        "Retrieved wrong dataType.")
        self.assertTrue(ids[2] in [inputs[0].id, inputs[1].id],
                        "Retrieved wrong dataType.")
        self.assertFalse(ids[0] in [inputs[0].id, inputs[1].id],
                         "Retrieved wrong dataType.")

        inputs = self.project_service.get_datatype_and_datatypegroup_inputs_for_operation(
            operation.gid, self.full_filter)
        self.assertEqual(len(inputs), 3, "Incorrect number of operations.")
        self.assertTrue(ids[0] in [inputs[0].id, inputs[1].id, inputs[2].id],
                        "Retrieved wrong dataType.")
        self.assertTrue(ids[1] in [inputs[0].id, inputs[1].id, inputs[2].id],
                        "Retrieved wrong dataType.")
        self.assertTrue(ids[2] in [inputs[0].id, inputs[1].id, inputs[2].id],
                        "Retrieved wrong dataType.")

        project, dt_group_id, first_dt, _ = self._create_datatype_group()
        first_dt.visible = False
        dao.store_entity(first_dt)
        parameters = json.dumps({"other_param": "_", "param_1": first_dt.gid})
        operation = model.Operation(self.test_user.id, project.id, algo.id,
                                    parameters)
        operation = dao.store_entity(operation)

        inputs = self.project_service.get_datatype_and_datatypegroup_inputs_for_operation(
            operation.gid, self.relevant_filter)
        self.assertEqual(len(inputs), 0, "Incorrect number of dataTypes.")
        inputs = self.project_service.get_datatype_and_datatypegroup_inputs_for_operation(
            operation.gid, self.full_filter)
        self.assertEqual(len(inputs), 1, "Incorrect number of dataTypes.")
        self.assertEqual(inputs[0].id, dt_group_id, "Wrong dataType.")
        self.assertTrue(inputs[0].id != first_dt.id, "Wrong dataType.")
    def test_reduce_dimension_component(self):
        """
         This method tests if the data passed to the launch method of
         the NDimensionArrayAdapter adapter is correct. The passed data should be a list
         of arrays with one dimension.
        """
        inserted_data = FlowService().get_available_datatypes(self.test_project.id, "tvb.datatypes.arrays.MappedArray")
        self.assertEqual(len(inserted_data), 0, "Expected to find no data.")
        #create an operation
        algorithm_id = FlowService().get_algorithm_by_module_and_class('tvb_test.adapters.ndimensionarrayadapter',
                                                                       'NDimensionArrayAdapter')[0].id
        operation = model.Operation(self.test_user.id, self.test_project.id, algorithm_id, 'test params',
                                    meta=json.dumps({DataTypeMetaData.KEY_STATE: "RAW"}), status="FINISHED",
                                    method_name=ABCAdapter.LAUNCH_METHOD)
        operation = dao.store_entity(operation)
        #save the array wrapper in DB
        adapter_instance = NDimensionArrayAdapter()
        PARAMS = {}
        self.operation_service.initiate_prelaunch(operation, adapter_instance, {}, **PARAMS)
        inserted_data = FlowService().get_available_datatypes(self.test_project.id, "tvb.datatypes.arrays.MappedArray")
        self.assertEqual(len(inserted_data), 1, "Problems when inserting data")
        gid = inserted_data[0][2]
        entity = dao.get_datatype_by_gid(gid)
        #from the 3D array do not select any array
        PARAMS = {"python_method": "reduce_dimension", "input_data": gid,
                  "input_data_dimensions_0": "requiredDim_1",
                  "input_data_dimensions_1": "",
                  "input_data_dimensions_2": ""}
        try:
            self.operation_service.initiate_prelaunch(operation, adapter_instance, {}, **PARAMS)
            self.fail("Test should not pass. The resulted array should be a 1D array.")
        except Exception:
            # OK, do nothing; we were expecting to produce a 1D array
            pass
        #from the 3D array select only a 1D array
        first_dim = [gid + '_1_0', 'requiredDim_1']
        PARAMS = {"python_method": "reduce_dimension", "input_data": gid,
                  "input_data_dimensions_0": first_dim,
                  "input_data_dimensions_1": gid + "_2_1"}
        self.operation_service.initiate_prelaunch(operation, adapter_instance, {}, **PARAMS)
        expected_result = entity.array_data[:, 0, 1]
        actual_result = adapter_instance.launch_param
        self.assertEqual(len(actual_result), len(expected_result), "Not the same size for results!")
        self.assertTrue(numpy.equal(actual_result, expected_result).all())

        #from the 3D array select a 2D array
        first_dim = [gid + '_1_0', gid + '_1_1', 'requiredDim_2']
        PARAMS = {"python_method": "reduce_dimension", "input_data": gid,
                  "input_data_dimensions_0": first_dim,
                  "input_data_dimensions_1": gid + "_2_1"}
        self.operation_service.initiate_prelaunch(operation, adapter_instance, {}, **PARAMS)
        expected_result = entity.array_data[slice(0, None), [0, 1], 1]
        actual_result = adapter_instance.launch_param
        self.assertEqual(len(actual_result), len(expected_result), "Not the same size for results!")
        self.assertTrue(numpy.equal(actual_result, expected_result).all())

        #from 3D array select 1D array by applying SUM function on the first
        #dimension and average function on the second dimension
        PARAMS = {"python_method": "reduce_dimension", "input_data": gid,
                  "input_data_dimensions_0": ["requiredDim_1", "func_sum"],
                  "input_data_dimensions_1": "func_average",
                  "input_data_dimensions_2": ""}
        self.operation_service.initiate_prelaunch(operation, adapter_instance, {}, **PARAMS)
        aux = numpy.sum(entity.array_data, axis=0)
        expected_result = numpy.average(aux, axis=0)
        actual_result = adapter_instance.launch_param
        self.assertEqual(len(actual_result), len(expected_result), "Not the same size of results!")
        self.assertTrue(numpy.equal(actual_result, expected_result).all())

        #from 3D array select a 2D array and apply op. on the second dimension
        PARAMS = {"python_method": "reduce_dimension", "input_data": gid,
                  "input_data_dimensions_0": ["requiredDim_2", "func_sum",
                                              "expected_shape_x,512", "operations_x,>"],
                  "input_data_dimensions_1": "",
                  "input_data_dimensions_2": ""}
        try:
            self.operation_service.initiate_prelaunch(operation, adapter_instance, {}, **PARAMS)
            self.fail("Test should not pass! The second dimension of the array should be >512.")
        except Exception:
            # OK, do nothing;
            pass
Пример #4
0
    def create_datatype_group(
        self,
        subject=USER_FULL_NAME,
        state=DATATYPE_STATE,
    ):
        """ 
        This method creates, stores and returns a DataTypeGroup entity.
        """
        group = model.OperationGroup(
            self.project.id,
            ranges=[json.dumps(self.RANGE_1),
                    json.dumps(self.RANGE_2)])
        group = dao.store_entity(group)
        group_ms = model.OperationGroup(
            self.project.id,
            ranges=[json.dumps(self.RANGE_1),
                    json.dumps(self.RANGE_2)])
        group_ms = dao.store_entity(group_ms)

        datatype_group = model.DataTypeGroup(group,
                                             subject=subject,
                                             state=state,
                                             operation_id=self.operation.id)
        # Set storage path, before setting data
        datatype_group.storage_path = self.files_helper.get_project_folder(
            self.project, str(self.operation.id))
        datatype_group = dao.store_entity(datatype_group)

        dt_group_ms = model.DataTypeGroup(group_ms,
                                          subject=subject,
                                          state=state,
                                          operation_id=self.operation.id)
        # Set storage path, before setting data
        dt_group_ms.storage_path = self.files_helper.get_project_folder(
            self.project, str(self.operation.id))
        dao.store_entity(dt_group_ms)

        # Now create some data types and add them to group
        for range_val1 in self.RANGE_1[1]:
            for range_val2 in self.RANGE_2[1]:
                operation = model.Operation(self.user.id,
                                            self.project.id,
                                            self.algorithm.id,
                                            'test parameters',
                                            meta=json.dumps(self.meta),
                                            status=model.STATUS_FINISHED,
                                            range_values=json.dumps({
                                                self.RANGE_1[0]:
                                                range_val1,
                                                self.RANGE_2[0]:
                                                range_val2
                                            }))
                operation.fk_operation_group = group.id
                operation = dao.store_entity(operation)
                datatype = self.create_datatype_with_storage(
                    operation_id=operation.id)
                datatype.number1 = range_val1
                datatype.number2 = range_val2
                datatype.fk_datatype_group = datatype_group.id
                datatype.set_operation_id(operation.id)
                dao.store_entity(datatype)

                op_ms = model.Operation(self.user.id,
                                        self.project.id,
                                        self.algorithm.id,
                                        'test parameters',
                                        meta=json.dumps(self.meta),
                                        status=model.STATUS_FINISHED,
                                        range_values=json.dumps({
                                            self.RANGE_1[0]:
                                            range_val1,
                                            self.RANGE_2[0]:
                                            range_val2
                                        }))
                op_ms.fk_operation_group = group_ms.id
                op_ms = dao.store_entity(op_ms)
                self.create_datatype_measure(
                    datatype, op_ms,
                    FilesHelper().get_project_folder(self.project,
                                                     str(op_ms.id)))

        return datatype_group
    def test_get_inputs_for_op_group_simple_inputs(self):
        """
        Tests method get_datatypes_inputs_for_operation_group.
        The dataType inputs will not be part of a dataType group.
        """
        #it's a list of 3 elem.
        array_wrappers = self._create_mapped_arrays(self.test_project.id)
        array_wrapper_ids = []
        for datatype in array_wrappers:
            array_wrapper_ids.append(datatype[0])

        datatype = dao.get_datatype_by_id(array_wrapper_ids[0])
        datatype.visible = False
        dao.store_entity(datatype)

        op_group = model.OperationGroup(self.test_project.id, "group",
                                        "range1[1..2]")
        op_group = dao.store_entity(op_group)
        params_1 = json.dumps({
            "param_5": "2",
            "param_1": array_wrappers[0][2],
            "param_2": array_wrappers[1][2],
            "param_6": "7"
        })
        params_2 = json.dumps({
            "param_5": "5",
            "param_3": array_wrappers[2][2],
            "param_2": array_wrappers[1][2],
            "param_6": "6"
        })

        algo_group = dao.find_group(
            'tvb.tests.framework.adapters.testadapter3', 'TestAdapter3')
        algo = dao.get_algorithm_by_group(algo_group.id)

        op1 = model.Operation(self.test_user.id,
                              self.test_project.id,
                              algo.id,
                              params_1,
                              op_group_id=op_group.id)
        op2 = model.Operation(self.test_user.id,
                              self.test_project.id,
                              algo.id,
                              params_2,
                              op_group_id=op_group.id)
        dao.store_entities([op1, op2])

        inputs = self.project_service.get_datatypes_inputs_for_operation_group(
            op_group.id, self.relevant_filter)
        self.assertEqual(len(inputs), 2)
        self.assertFalse(array_wrapper_ids[0] in [inputs[0].id, inputs[1].id],
                         "Retrieved wrong dataType.")
        self.assertTrue(array_wrapper_ids[1] in [inputs[0].id, inputs[1].id],
                        "Retrieved wrong dataType.")
        self.assertTrue(array_wrapper_ids[2] in [inputs[0].id, inputs[1].id],
                        "Retrieved wrong dataType.")

        inputs = self.project_service.get_datatypes_inputs_for_operation_group(
            op_group.id, self.full_filter)
        self.assertEqual(len(inputs), 3, "Incorrect number of dataTypes.")
        self.assertTrue(
            array_wrapper_ids[0] in [inputs[0].id, inputs[1].id, inputs[2].id])
        self.assertTrue(
            array_wrapper_ids[1] in [inputs[0].id, inputs[1].id, inputs[2].id])
        self.assertTrue(
            array_wrapper_ids[2] in [inputs[0].id, inputs[1].id, inputs[2].id])
Пример #6
0
    def test_get_filtered_datatypes(self):
        """
        Test the filter function when retrieving dataTypes.
        """
        #Create some test operations
        start_dates = [
            datetime.now(),
            datetime.strptime("08-06-2010", "%m-%d-%Y"),
            datetime.strptime("07-21-2010", "%m-%d-%Y"),
            datetime.strptime("05-06-2010", "%m-%d-%Y"),
            datetime.strptime("07-21-2011", "%m-%d-%Y")
        ]
        end_dates = [
            datetime.now(),
            datetime.strptime("08-12-2010", "%m-%d-%Y"),
            datetime.strptime("08-12-2010", "%m-%d-%Y"),
            datetime.strptime("08-12-2011", "%m-%d-%Y"),
            datetime.strptime("08-12-2011", "%m-%d-%Y")
        ]
        for i in range(5):
            operation = model.Operation(self.test_user.id,
                                        self.test_project.id,
                                        self.algorithm1.id,
                                        'test params',
                                        status=model.STATUS_FINISHED,
                                        start_date=start_dates[i],
                                        completion_date=end_dates[i])
            operation = dao.store_entity(operation)
            storage_path = FilesHelper().get_project_folder(
                self.test_project, str(operation.id))
            if i < 4:
                datatype_inst = Datatype1()
                datatype_inst.type = "Datatype1"
                datatype_inst.subject = "John Doe" + str(i)
                datatype_inst.state = "RAW"
                datatype_inst.set_operation_id(operation.id)
                dao.store_entity(datatype_inst)
            else:
                for _ in range(2):
                    datatype_inst = Datatype2()
                    datatype_inst.storage_path = storage_path
                    datatype_inst.type = "Datatype2"
                    datatype_inst.subject = "John Doe" + str(i)
                    datatype_inst.state = "RAW"
                    datatype_inst.string_data = ["data"]
                    datatype_inst.set_operation_id(operation.id)
                    dao.store_entity(datatype_inst)

        returned_data = self.flow_service.get_available_datatypes(
            self.test_project.id, Datatype1)[0]
        for row in returned_data:
            if row[1] != 'Datatype1':
                self.fail("Some invalid data was returned!")
        self.assertEqual(4, len(returned_data), "Invalid length of result")

        filter_op = FilterChain(
            fields=[
                FilterChain.datatype + ".state",
                FilterChain.operation + ".start_date"
            ],
            values=["RAW", datetime.strptime("08-01-2010", "%m-%d-%Y")],
            operations=["==", ">"])
        returned_data = self.flow_service.get_available_datatypes(
            self.test_project.id, Datatype1, filter_op)[0]
        returned_subjects = [one_data[3] for one_data in returned_data]

        if "John Doe0" not in returned_subjects or "John Doe1" not in returned_subjects or len(
                returned_subjects) != 2:
            self.fail("DataTypes were not filtered properly!")