Пример #1
0
def test_store_load_structuralMRI(tmph5factory):
    volume = Volume(
        origin=numpy.zeros((3, 3)),
        voxel_size=numpy.zeros((3, 3))
    )

    structural_mri = StructuralMRI(
        array_data=numpy.zeros((3, 3)),
        weighting="T1",
        volume=volume
    )

    tmp_file = tmph5factory("StructuralMRI_{}.h5".format(volume.gid))

    with StructuralMRIH5(tmp_file) as f:
        f.store(structural_mri)

    structural_mri_stored = StructuralMRI()
    with pytest.raises(TraitAttributeError):
        structural_mri_stored.array_data
    with pytest.raises(TraitAttributeError):
        structural_mri_stored.volume

    with StructuralMRIH5(tmp_file) as f:
        f.load_into(structural_mri_stored)
    assert structural_mri_stored.array_data.shape == (3, 3)
    # referenced datatype is not loaded
    with pytest.raises(TraitAttributeError):
        structural_mri_stored.volume
 def _create_mri(self, volume):
     mri = StructuralMRI(storage_path=self.storage_path)
     mri.volume = volume
     mri.title = "NIFTI Import - " + os.path.split(self.data_file)[1]
     mri.dimensions_labels = ["X", "Y", "Z"]
     mri.weighting = "T1"
     self.parser.parse(mri, False)
     return mri
Пример #3
0
    def _create_mri(self, volume, title):
        mri = StructuralMRI()
        mri.title = title
        mri.dimensions_labels = ["X", "Y", "Z"]
        mri.weighting = "T1"
        mri.array_data = self.parser.parse()
        mri.volume = volume

        return h5.store_complete(mri, self.storage_path)
Пример #4
0
 def _create_mri(self, volume):
     mri = StructuralMRI(storage_path=self.storage_path)
     mri.volume = volume
     mri.title = "NIFTI Import - " + os.path.split(self.data_file)[1]
     mri.dimensions_labels = ["X", "Y", "Z"]
     mri.weighting = "T1"
     self.parser.parse(mri, False)
     return mri
Пример #5
0
    def launch(self, view_model):
        resolution = view_model.resolution
        weighting = view_model.weighting
        inj_f_thresh = view_model.inj_f_thresh / 100.
        vol_thresh = view_model.vol_thresh

        project = dao.get_project_by_id(self.current_project_id)
        manifest_file = self.file_handler.get_allen_mouse_cache_folder(
            project.name)
        manifest_file = os.path.join(manifest_file,
                                     'mouse_connectivity_manifest.json')
        cache = MouseConnectivityCache(resolution=resolution,
                                       manifest_file=manifest_file)

        # the method creates a dictionary with information about which experiments need to be downloaded
        ist2e = dictionary_builder(cache, False)

        # the method downloads experiments necessary to build the connectivity
        projmaps = download_an_construct_matrix(cache, weighting, ist2e, False)

        # the method cleans the file projmaps in 4 steps
        projmaps = pms_cleaner(projmaps)

        # download from the AllenSDK the annotation volume, the template volume
        vol, annot_info = cache.get_annotation_volume()
        template, template_info = cache.get_template_volume()

        # rotate template in the TVB 3D reference:
        template = rotate_reference(template)

        # grab the StructureTree instance
        structure_tree = cache.get_structure_tree()

        # the method includes in the parcellation only brain regions whose volume is greater than vol_thresh
        projmaps = areas_volume_threshold(cache, projmaps, vol_thresh,
                                          resolution)

        # the method exclude from the experimental dataset
        # those exps where the injected fraction of pixel in the injection site is lower than than the inj_f_thr
        projmaps = infected_threshold(cache, projmaps, inj_f_thresh)

        # the method creates file order and keyword that will be the link between the SC order and the
        # id key in the Allen database
        [order, key_ord] = create_file_order(projmaps, structure_tree)

        # the method builds the Structural Connectivity (SC) matrix
        structural_conn = construct_structural_conn(projmaps, order, key_ord)

        # the method returns the coordinate of the centres and the name of the brain areas in the selected parcellation
        [centres, names] = construct_centres(cache, order, key_ord)

        # the method returns the tract lengths between the brain areas in the selected parcellation
        tract_lengths = construct_tract_lengths(centres)

        # the method associated the parent and the grandparents to the child in the selected parcellation with
        # the biggest volume
        [unique_parents, unique_grandparents
         ] = parents_and_grandparents_finder(cache, order, key_ord,
                                             structure_tree)

        # the method returns a volume indexed between 0 and N-1, with N=tot brain areas in the parcellation.
        # -1=background and areas that are not in the parcellation
        vol_parcel = mouse_brain_visualizer(vol, order, key_ord,
                                            unique_parents,
                                            unique_grandparents,
                                            structure_tree, projmaps)

        # results: Connectivity, Volume & RegionVolumeMapping
        # Connectivity
        result_connectivity = Connectivity()
        result_connectivity.centres = centres
        result_connectivity.region_labels = numpy.array(names)
        result_connectivity.weights = structural_conn
        result_connectivity.tract_lengths = tract_lengths
        result_connectivity.configure()
        # Volume
        result_volume = Volume()
        result_volume.origin = numpy.array([[0.0, 0.0, 0.0]])
        result_volume.voxel_size = numpy.array(
            [resolution, resolution, resolution])
        # result_volume.voxel_unit= micron
        # Region Volume Mapping
        result_rvm = RegionVolumeMapping()
        result_rvm.volume = result_volume
        result_rvm.array_data = vol_parcel
        result_rvm.connectivity = result_connectivity
        result_rvm.title = "Volume mouse brain "
        result_rvm.dimensions_labels = ["X", "Y", "Z"]
        # Volume template
        result_template = StructuralMRI()
        result_template.array_data = template
        result_template.weighting = 'T1'
        result_template.volume = result_volume

        connectivity_index = h5.store_complete(result_connectivity,
                                               self.storage_path)
        volume_index = h5.store_complete(result_volume, self.storage_path)
        rvm_index = h5.store_complete(result_rvm, self.storage_path)
        template_index = h5.store_complete(result_template, self.storage_path)

        return [connectivity_index, volume_index, rvm_index, template_index]
Пример #6
0
    def launch(self, resolution, weighting, inf_vox_thresh, vol_thresh):
        resolution = int(resolution)
        weighting = int(weighting)
        inf_vox_thresh = float(inf_vox_thresh)
        vol_thresh = float(vol_thresh)

        project = dao.get_project_by_id(self.current_project_id)
        manifest_file = self.file_handler.get_allen_mouse_cache_folder(
            project.name)
        manifest_file = os.path.join(manifest_file,
                                     'mouse_connectivity_manifest.json')
        cache = MouseConnectivityCache(resolution=resolution,
                                       manifest_file=manifest_file)

        # the method creates a dictionary with information about which experiments need to be downloaded
        ist2e = DictionaireBuilder(cache, False)

        # the method downloads experiments necessary to build the connectivity
        projmaps = DownloadAndConstructMatrix(cache, weighting, ist2e, False)

        # the method cleans the file projmaps in 4 steps
        projmaps = pmsCleaner(projmaps)

        #download from the AllenSDK the annotation volume, the ontology, the template volume
        Vol, annot_info = cache.get_annotation_volume()
        ontology = cache.get_ontology()
        template, template_info = cache.get_template_volume()

        #rotate template in the TVB 3D reference:
        template = RotateReference(template)

        # the method includes in the parcellation only brain regions whose volume is greater than vol_thresh
        projmaps = AreasVolumeTreshold(cache, projmaps, vol_thresh, resolution,
                                       Vol, ontology)

        # the method includes in the parcellation only brain regions where at least one injection experiment had infected more than N voxel (where N is inf_vox_thresh)
        projmaps = AreasVoxelTreshold(cache, projmaps, inf_vox_thresh, Vol,
                                      ontology)

        # the method creates file order and keyord that will be the link between the SC order and the id key in the Allen database
        [order, key_ord] = CreateFileOrder(projmaps, ontology)

        # the method builds the Structural Connectivity (SC) matrix
        SC = ConstructingSC(projmaps, order, key_ord)

        # the method returns the coordinate of the centres and the name of the brain areas in the selected parcellation
        [centres, names] = Construct_centres(cache, ontology, order, key_ord)

        # the method returns the tract lengths between the brain areas in the selected parcellation
        tract_lengths = ConstructTractLengths(centres)

        # the method associated the parent and the grandparents to the child in the selected parcellation with the biggest volume
        [unique_parents, unique_grandparents
         ] = ParentsAndGrandParentsFinder(cache, order, key_ord, ontology)

        # the method returns a volume indexed between 0 and N-1, with N=tot brain areas in the parcellation. -1=background and areas that are not in the parcellation
        Vol_parcel = MouseBrainVisualizer(Vol, order, key_ord, unique_parents,
                                          unique_grandparents, ontology,
                                          projmaps)

        # results: Connectivity, Volume & RegionVolumeMapping
        # Connectivity
        result_connectivity = Connectivity(storage_path=self.storage_path)
        result_connectivity.centres = centres
        result_connectivity.region_labels = names
        result_connectivity.weights = SC
        result_connectivity.tract_lengths = tract_lengths
        # Volume
        result_volume = Volume(storage_path=self.storage_path)
        result_volume.origin = [[0.0, 0.0, 0.0]]
        result_volume.voxel_size = [resolution, resolution, resolution]
        # result_volume.voxel_unit= micron
        # Region Volume Mapping
        result_rvm = RegionVolumeMapping(storage_path=self.storage_path)
        result_rvm.volume = result_volume
        result_rvm.array_data = Vol_parcel
        result_rvm.connectivity = result_connectivity
        result_rvm.title = "Volume mouse brain "
        result_rvm.dimensions_labels = ["X", "Y", "Z"]
        # Volume template
        result_template = StructuralMRI(storage_path=self.storage_path)
        result_template.array_data = template
        result_template.weighting = 'T1'
        result_template.volume = result_volume
        return [
            result_connectivity, result_volume, result_rvm, result_template
        ]
    def launch(self, resolution, weighting, inj_f_thresh, vol_thresh):
        resolution = int(resolution)
        weighting = int(weighting)
        inj_f_thresh = float(inj_f_thresh)/100.
        vol_thresh = float(vol_thresh)

        project = dao.get_project_by_id(self.current_project_id)
        manifest_file = self.file_handler.get_allen_mouse_cache_folder(project.name)
        manifest_file = os.path.join(manifest_file, 'mouse_connectivity_manifest.json')
        cache = MouseConnectivityCache(resolution=resolution, manifest_file=manifest_file)

        # the method creates a dictionary with information about which experiments need to be downloaded
        ist2e = dictionary_builder(cache, False)

        # the method downloads experiments necessary to build the connectivity
        projmaps = download_an_construct_matrix(cache, weighting, ist2e, False)

        # the method cleans the file projmaps in 4 steps
        projmaps = pms_cleaner(projmaps)

        # download from the AllenSDK the annotation volume, the template volume
        vol, annot_info = cache.get_annotation_volume()
        template, template_info = cache.get_template_volume()

        # rotate template in the TVB 3D reference:
        template = rotate_reference(template)

        # grab the StructureTree instance
        structure_tree = cache.get_structure_tree()

        # the method includes in the parcellation only brain regions whose volume is greater than vol_thresh
        projmaps = areas_volume_threshold(cache, projmaps, vol_thresh, resolution)
        
        # the method exclude from the experimental dataset
        # those exps where the injected fraction of pixel in the injection site is lower than than the inj_f_thr 
        projmaps = infected_threshold(cache, projmaps, inj_f_thresh)

        # the method creates file order and keyword that will be the link between the SC order and the
        # id key in the Allen database
        [order, key_ord] = create_file_order(projmaps, structure_tree)

        # the method builds the Structural Connectivity (SC) matrix
        structural_conn = construct_structural_conn(projmaps, order, key_ord)

        # the method returns the coordinate of the centres and the name of the brain areas in the selected parcellation
        [centres, names] = construct_centres(cache, order, key_ord)

        # the method returns the tract lengths between the brain areas in the selected parcellation
        tract_lengths = construct_tract_lengths(centres)

        # the method associated the parent and the grandparents to the child in the selected parcellation with
        # the biggest volume
        [unique_parents, unique_grandparents] = parents_and_grandparents_finder(cache, order, key_ord, structure_tree)

        # the method returns a volume indexed between 0 and N-1, with N=tot brain areas in the parcellation.
        # -1=background and areas that are not in the parcellation
        vol_parcel = mouse_brain_visualizer(vol, order, key_ord, unique_parents, unique_grandparents,
                                            structure_tree, projmaps)

        # results: Connectivity, Volume & RegionVolumeMapping
        # Connectivity
        result_connectivity = Connectivity(storage_path=self.storage_path)
        result_connectivity.centres = centres
        result_connectivity.region_labels = names
        result_connectivity.weights = structural_conn
        result_connectivity.tract_lengths = tract_lengths
        # Volume
        result_volume = Volume(storage_path=self.storage_path)
        result_volume.origin = [[0.0, 0.0, 0.0]]
        result_volume.voxel_size = [resolution, resolution, resolution]
        # result_volume.voxel_unit= micron
        # Region Volume Mapping
        result_rvm = RegionVolumeMapping(storage_path=self.storage_path)
        result_rvm.volume = result_volume
        result_rvm.array_data = vol_parcel
        result_rvm.connectivity = result_connectivity
        result_rvm.title = "Volume mouse brain "
        result_rvm.dimensions_labels = ["X", "Y", "Z"]
        # Volume template
        result_template = StructuralMRI(storage_path=self.storage_path)
        result_template.array_data = template
        result_template.weighting = 'T1'
        result_template.volume = result_volume
        return [result_connectivity, result_volume, result_rvm, result_template]