def _prepare_simulator_from_view_model(self, view_model): simulator = Simulator() simulator.gid = view_model.gid conn = self.load_traited_by_gid(view_model.connectivity) simulator.connectivity = conn simulator.conduction_speed = view_model.conduction_speed simulator.coupling = view_model.coupling rm_surface = None if view_model.surface: simulator.surface = Cortex() rm_index = self.load_entity_by_gid( view_model.surface.region_mapping_data.hex) rm = h5.load_from_index(rm_index) rm_surface_index = self.load_entity_by_gid(rm_index.fk_surface_gid) rm_surface = h5.load_from_index(rm_surface_index, CorticalSurface) rm.surface = rm_surface rm.connectivity = conn simulator.surface.region_mapping_data = rm if simulator.surface.local_connectivity: lc = self.load_traited_by_gid( view_model.surface.local_connectivity) assert lc.surface.gid == rm_index.fk_surface_gid lc.surface = rm_surface simulator.surface.local_connectivity = lc if view_model.stimulus: stimulus_index = self.load_entity_by_gid(view_model.stimulus.hex) stimulus = h5.load_from_index(stimulus_index) simulator.stimulus = stimulus if isinstance(stimulus, StimuliSurface): simulator.stimulus.surface = rm_surface else: simulator.stimulus.connectivity = simulator.connectivity simulator.model = view_model.model simulator.integrator = view_model.integrator simulator.initial_conditions = view_model.initial_conditions simulator.monitors = view_model.monitors simulator.simulation_length = view_model.simulation_length # TODO: why not load history here? # if view_model.history: # history_index = dao.get_datatype_by_gid(view_model.history.hex) # history = h5.load_from_index(history_index) # assert isinstance(history, SimulationHistory) # history.fill_into(self.algorithm) return simulator
def test_models_list(self, mocker): models_form = SimulatorModelFragment() simulator = Simulator() simulator.model = ModelsEnum.EPILEPTOR.instance models_form.fill_from_trait(simulator) rendering_rules = SimulatorFragmentRenderingRules(is_model_fragment=True) soup = self.prepare_simulator_form_for_search(mocker, rendering_rules, form=models_form) select_field = soup.find_all('select') assert len(select_field) == 1, 'Number of select inputs is different than 1' select_field_options = soup.find_all('option') assert len(select_field_options) == len(ModelsEnum), 'Number of select field options != number of models' select_field_choice = soup.find_all('option', selected=True) assert len(select_field_choice) == 1 assert 'Epileptor' in select_field_choice[0].attrs['value']
def test_models_list(self): all_models_for_ui = get_ui_name_to_model() models_form = SimulatorModelFragment() simulator = Simulator() simulator.model = ModelsEnum.EPILEPTOR.get_class()() models_form.fill_from_trait(simulator) html = str(models_form) soup = BeautifulSoup(html) select_field = soup.find_all('select') assert len(select_field) == 1, 'Number of select inputs is different than 1' select_field_options = soup.find_all('option') assert len(select_field_options) == len(all_models_for_ui), 'Number of select field options != number of models' select_field_choice = soup.find_all('option', selected=True) assert len(select_field_choice) == 1 assert 'Epileptor' in select_field_choice[0].attrs['value']
def test(dt=0.1, noise_strength=0.001, config=CONFIGURED): # Select the regions for the fine scale modeling with NEST spiking networks nest_nodes_ids = [] # the indices of fine scale regions modeled with NEST # In this example, we model parahippocampal cortices (left and right) with NEST connectivity = Connectivity.from_file(CONFIGURED.DEFAULT_CONNECTIVITY_ZIP) for id in range(connectivity.region_labels.shape[0]): if connectivity.region_labels[id].find("hippo") > 0: nest_nodes_ids.append(id) connectivity.configure() # Create a TVB simulator and set all desired inputs # (connectivity, model, surface, stimuli etc) # We choose all defaults in this example simulator = Simulator() simulator.integrator.dt = dt simulator.integrator.noise.nsig = np.array([noise_strength]) simulator.model = ReducedWongWangExcIOInhI() simulator.connectivity = connectivity mon_raw = Raw(period=simulator.integrator.dt) simulator.monitors = (mon_raw, ) # Build a NEST network model with the corresponding builder # Using all default parameters for this example nest_model_builder = RedWWExcIOInhIMultisynapseBuilder(simulator, nest_nodes_ids, config=config) nest_model_builder.configure() for prop in [ "min_delay", "tvb_dt", "tvb_model", "tvb_connectivity", "tvb_weights", "tvb_delays", "number_of_nodes", "number_of_spiking_nodes", "spiking_nodes_labels", "number_of_populations", "populations_models", "populations_nodes", "populations_scales", "populations_sizes", "populations_params", "populations_connections_labels", "populations_connections_models", "populations_connections_nodes", "populations_connections_weights", "populations_connections_delays", "populations_connections_receptor_types", "populations_connections_conn_spec", "nodes_connections_labels", "nodes_connections_models", "nodes_connections_source_nodes", "nodes_connections_target_nodes", "nodes_connections_weights", "nodes_connections_delays", "nodes_connections_receptor_types", "nodes_connections_conn_spec" ]: print("%s:\n%s\n\n" % (prop, str(getattr(nest_model_builder, prop))))
def build(self, **model_params): # Load, normalize and configure connectivity if isinstance(self.connectivity, string_types): connectivity = Connectivity.from_file(self.connectivity) else: connectivity = self.connectivity if self.scale_connectivity_weights is not None: if isinstance(self.scale_connectivity_weights, string_types): connectivity.weights = connectivity.scaled_weights( mode=self.scale_connectivity_weights) else: connectivity.weights /= self.scale_connectivity_weights if not self.delays_flag: connectivity.configure() # to set speed # Given that # idelays = numpy.rint(delays / dt).astype(numpy.int32) # and delays = tract_lengths / speed connectivity.tract_lengths = 0.1 * self.dt * connectivity.speed connectivity.configure() # Build model: model = self.model(**model_params) # Build integrator integrator = self.integrator(dt=self.dt) integrator.noise.nsig = np.array(ensure_list(self.noise_strength)) # Build monitors: assert Raw in self.monitors monitors = [] for monitor in self.monitors: monitors.append(monitor(period=self.dt)) monitors = tuple(monitors) # Build simulator simulator = Simulator() simulator._config = self.config simulator.connectivity = connectivity simulator.model = model simulator.integrator = integrator simulator.monitors = monitors return simulator
def test(dt=0.1, noise_strength=0.001, config=CONFIGURED): # Select the regions for the fine scale modeling with ANNarchy spiking networks anarchy_nodes_ids = list( range(10)) # the indices of fine scale regions modeled with ANNarchy # In this example, we model parahippocampal cortices (left and right) with ANNarchy connectivity = Connectivity.from_file(CONFIGURED.DEFAULT_CONNECTIVITY_ZIP) connectivity.configure() # Create a TVB simulator and set all desired inputs # (connectivity, model, surface, stimuli etc) # We choose all defaults in this example simulator = Simulator() simulator.integrator.dt = dt # simulator.integrator.noise.nsig = np.array([noise_strength]) simulator.model = ReducedWongWangExcIOInhI() simulator.connectivity = connectivity mon_raw = Raw(period=simulator.integrator.dt) simulator.monitors = (mon_raw, ) # Build a ANNarchy network model with the corresponding builder # Using all default parameters for this example anarchy_model_builder = BasalGangliaIzhikevichBuilder(simulator, anarchy_nodes_ids, config=config) anarchy_model_builder.configure() for prop in [ "min_delay", "tvb_dt", "tvb_model", "tvb_connectivity", "tvb_weights", "tvb_delays", "number_of_nodes", "number_of_spiking_nodes", "spiking_nodes_labels", "number_of_populations", "populations_models", "populations_nodes", "populations_scales", "populations_sizes", "populations_params", "populations_connections_labels", "populations_connections_models", "populations_connections_nodes", "populations_connections_weights", "populations_connections_delays", "populations_connections_receptor_types", "populations_connections_conn_spec", "nodes_connections_labels", "nodes_connections_models", "nodes_connections_source_nodes", "nodes_connections_target_nodes", "nodes_connections_weights", "nodes_connections_delays", "nodes_connections_receptor_types", "nodes_connections_conn_spec" ]: print("%s:\n%s\n\n" % (prop, str(getattr(anarchy_model_builder, prop))))
def main_example(tvb_sim_model, connectivity_zip=CONFIGURED.DEFAULT_CONNECTIVITY_ZIP, dt=0.1, noise_strength=0.001, simulation_length=100.0, config=CONFIGURED): plotter = Plotter(config) # --------------------------------------1. Load TVB connectivity---------------------------------------------------- connectivity = Connectivity.from_file(connectivity_zip) connectivity.configure() plotter.plot_tvb_connectivity(connectivity) # ----------------------2. Define a TVB simulator (model, integrator, monitors...)---------------------------------- # Create a TVB simulator and set all desired inputs # (connectivity, model, surface, stimuli etc) # We choose all defaults in this example simulator = Simulator() simulator.integrator = HeunStochastic(dt=dt) simulator.integrator.noise.nsig = np.array(ensure_list(noise_strength)) simulator.model = tvb_sim_model simulator.connectivity = connectivity mon_raw = Raw(period=simulator.integrator.dt) simulator.monitors = (mon_raw, ) # -----------------------------------3. Simulate and gather results------------------------------------------------- # Configure the simulator with the TVB-NEST interface... # simulator.configure(tvb_nest_interface=tvb_nest_model) simulator.configure() # ...and simulate! t_start = time.time() results = simulator.run(simulation_length=simulation_length) print("\nSimulated in %f secs!" % (time.time() - t_start)) # -------------------------------------------6. Plot results-------------------------------------------------------- plot_results(results, simulator, None, "State Variables", simulator.model.variables_of_interest, plotter) return connectivity, results